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Abstract

Information overload is a major obstacle to scientific progress. The explosive growth in
scientific literature and data has made it ever harder to discover useful insights in a large
mass of information. Today scientific knowledge is accessed through search engines, but
they are unable to organize scientific knowledge alone. In this paper we introduce Galactica:
a large language model that can store, combine and reason about scientific knowledge. We
train on a large scientific corpus of papers, reference material, knowledge bases and many
other sources. We outperform existing models on a range of scientific tasks. On technical
knowledge probes such as LaTeX equations, Galactica outperforms the latest GPT-3 by
68.2% versus 49.0%. Galactica also performs well on reasoning, outperforming Chinchilla
on mathematical MMLU by 41.3% to 35.7%, and PaLM 540B on MATH with a score of 20.4%
versus 8.8%. It also sets a new state-of-the-art on downstream tasks such as PubMedQA and
MedMCQA dev of 77.6% and 52.9%. And despite not being trained on a general corpus,
Galactica outperforms BLOOM and OPT-175B on BIG-bench. We believe these results
demonstrate the potential for language models as a new interface for science. We open
source the model for the benefit of the scientific community1.

1 Introduction
The original promise of computing was to solve information overload in science. In his 1945 essay "As We
May Think", Vannevar Bush observed how "publication has been extended far beyond our present ability to
make real use of the record" (Bush, 1945). He proposed computers as a solution to manage the growing
mountain of information. Licklider expanded on this with the vision of a symbiotic relationship between
humans and machines. Computers would take care of routine tasks such as storage and retrieval, "preparing
the way for insights and decisions in scientific thinking" (Licklider, 1960).
Computing has indeed revolutionized how research is conducted, but information overload remains an
overwhelming problem (Bornmann and Mutz, 2014). In May 2022, an average of 516 papers per day were
submitted to arXiv (arXiv, 2022). Beyond papers, scientific data is also growing much more quickly than our
ability to process it (Marx, 2013). As of August 2022, the NCBI GenBank contained 1.49× 1012 nucleotide
bases (GenBank, 2022). Given the volume of information, it is impossible for a single person to read all the
papers in a given field; and it is likewise challenging to organize data on the underlying scientific phenomena.
Search engines are the current interface for accessing scientific knowledge following the Licklider paradigm.
But they do not organize knowledge directly, and instead point to secondary layers such as Wikipedia,
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UniProt and PubChem Compound which organize literature and data. These resources require costly human
contributions, for example writing a review of literature, an encyclopedia article or annotating a protein.
Given this bottleneck, researchers continue to feel overwhelmed even with powerful search tools to hand.
In this paper, we argue for a better way through large language models. Unlike search engines, language
models can potentially store, combine and reason about scientific knowledge. For example, a model trained
on the literature could potentially find hidden connections between different research, find hidden gems,
and bring these insights to the surface. It could synthesize knowledge by generating secondary content
automatically: such as literature reviews, encyclopedia articles, lecture notes and more. And lastly, it could
organize different modalities: linking papers with code, protein sequences with compounds, theories with
LaTeX, and more. Our ultimate vision is a single neural network for powering scientific tasks. We believe
this is will be the next interface for how humans access scientific knowledge, and we get started in this paper.

1.1 Our Contribution

We introduce a new large language model called Galactica (GAL) for automatically organizing science.
Galactica is trained on a large and curated corpus of humanity’s scientific knowledge. This includes over
48 million papers, textbooks and lecture notes, millions of compounds and proteins, scientific websites,
encyclopedias andmore. Unlike existing languagemodels, which rely on an uncurated crawl-based paradigm,
our corpus is high-quality and highly curated. We are able to train on it formultiple epochswithout overfitting,
where upstream and downstream performance improves with use of repeated tokens.
Dataset design is critical to our approach, which includes curating a high-quality dataset and engineering
an interface to interact with the body of knowledge. All data is processed in a common markdown format
to blend knowledge between sources. We also include task-specific datasets in pre-training to facilitate
composition of this knowledge into new task contexts. For the interface, we use task-specific tokens to
support different types of knowledge. We process citations with a special token, that allows a researcher to
predict a citation given any input context. We wrap step-by-step reasoning in a special token, that mimicks an
internal working memory. And lastly, we wrap modalities such as SMILES and protein sequences in special
tokens, which allows a researcher to interface with them using natural language. With this interface and the
body of scientific knowledge in the model, we achieve state-of-the-art results across many scientific tasks.
On reasoning tasks, Galactica beats existing language models on benchmarks such as MMLU and
MATH (Hendrycks et al., 2020, 2021). With our reasoning token approach, we outperform Chinchilla
on mathematical MMLU with an average score of 41.3% versus 35.7% (Hoffmann et al., 2022). Our 120B
model achieves a score of 20.4% versus PaLM 540B’s 8.8% on MATH (Chowdhery et al., 2022; Lewkowycz
et al., 2022). The 30B model also beats PaLM 540B on this task with 18 times less parameters. We believe
this adds another reasoning method to the deep learning toolkit, alongside the existing chain-of-thought
approach that has been well explored recently (Wei et al., 2022; Suzgun et al., 2022).
We also find Galactica performs strongly in knowledge-intensive scientific tasks. We conduct detailed
knowledge probes of Galactica’s knowledge of equations, chemical reactions and other scientific knowledge.
Galactica significantly exceeds the performance of general language models such as the latest GPT-3 in these
tasks; on LaTeX equations, it achieves a score of 68.2% versus the latest GPT-3’s 49.0% (Brown et al., 2020).
Galactica also performs well in downstream scientific tasks, and we set a new state-of-the-art on several
downstream tasks such as PubMedQA (77.6%) and MedMCQA dev (52.9%) (Jin et al., 2019; Pal et al., 2022).
We also demonstrate new capabilities with Galactica’s interface. First, the capability of predicting citations
improves smoothly with scale, and we also find the model becomes better at modelling the underlying
distribution of citations: the empirical distribution function approaches the reference distribution with scale.
Importantly, we find this approach outperforms tuned sparse and dense retrieval approaches for citation
prediction. This, along other results, demonstrates the potential for language models to replace the Licklider
paradigm, document storage and retrieval, with their context-associative power in weight memory.
In addition, Galactica can perform multi-modal tasks involving SMILES chemical formulas and protein
sequences. We formulate drug discovery tasks as text prompts and show performance scales in a weakly
supervised setup. We also demonstrate Galactica learns tasks such as IUPAC name prediction in a self-
supervised way, and does so by attending to interpretable properties such as functional groups. Lastly,
Galactica can annotate protein sequences with natural language, including predicting functional keywords.
Galactica was used to helpwrite this paper, including recommendingmissing citations, topics to discuss in the
introduction and related work, recommending further work, and helping write the abstract and conclusion.
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2 Related Work
Large Language Models (LLMs) LLMs have achieved breakthrough performance on NLP tasks in recent
years. Models are trainedwith self-supervision on large, general corpuses and they performwell on hundreds
of tasks (Brown et al., 2020; Rae et al., 2021; Hoffmann et al., 2022; Black et al., 2022; Zhang et al., 2022;
Chowdhery et al., 2022). This includes scientific knowledge tasks such as MMLU (Hendrycks et al., 2020).
They have the capability to learn in-context through few-shot learning (Brown et al., 2020). The capability set
increases with scale, and recent work has highlighted reasoning capabilities at larger scales with a suitable
prompting strategy (Wei et al., 2022; Chowdhery et al., 2022; Kojima et al., 2022; Lewkowycz et al., 2022).
One downside of self-supervision has been the move towards uncurated data. Models may mirror misinfor-
mation, stereotypes and bias in the corpus (Sheng et al., 2019; Kurita et al., 2019; Dev et al., 2019; Blodgett
et al., 2020; Sheng et al., 2021). This is undesirable for scientific tasks which value truth. Uncurated data
also means more tokens with limited transfer value for the target use-case; wasting compute budget. For
example, the PaLM corpus is 50% social media conversations, which may have limited transfer towards
scientific tasks (Chowdhery et al., 2022). The properties of scientific text also differ from general text - e.g.
scientific terms and mathematics - meaning a general corpus and tokenizer may be inefficient. We explore
whether a normative approach to dataset selection can work with the large model paradigm in this work.

Scientific Language Models Works such as SciBERT, BioLM and others have shown the benefit of a curated,
scientific corpus (Beltagy et al., 2019; Lewis et al., 2020a; Gu et al., 2020; Lo et al., 2019b; Gu et al., 2020; Shin
et al., 2020; Hong et al., 2022). The datasets and models were typically small in scale and scope, much less
than corpora for general models2. Beyond scientific text, Transformers for protein sequences and SMILES
have shown potential for learning natural representations (Rives et al., 2021; Honda et al., 2019; Irwin et al.,
2021; Nijkamp et al., 2022; Lin et al., 2022b). However, sequences like SMILES have descriptive limitations for
representing chemical structure. We explore in this work whether a large, multi-modal scientific corpus can
aid representation learning, where sequences occur alongside footprints and text in a signal-dense context.

Scaling Laws The idea of "scaling laws" was put forward by Kaplan et al. (2020), who demonstrated
evidence that loss scales as a power-law with model size, dataset size, and the amount of training compute.
The focus was on upstream perplexity, and work by Tay et al. (2022a) showed that this does not always
correlate with downstream performance. Hoffmann et al. (2022) presented new analysis taking into account
the optimal amount of data, and suggested that existing language models were undertrained: "Chinchilla
scaling laws". This work did not take into the account of fresh versus repeated tokens. In this work, we show
that we can improve upstream and downstream performance by training on repeated tokens.

Language Models as Knowledge Bases Storing information in weights is more unreliable in the sense
models may blend information together, hallucination, but it is more "pliable" in the sense it can associate
information through the representation space, association. Despite hallucination risks, there is evidence large
language models can act as implicit knowledge bases with sufficient capacity (Petroni et al., 2019). They
perform well on knowledge-intensive tasks such as general knowledge (TriviaQA) and specialist knowledge
(MMLU) without an external retrieval mechanism (Brown et al., 2020; Hendrycks et al., 2020).
The question of how to update network knowledge remains an active research question (Scialom et al.,
2022; Mitchell et al., 2022). Likewise, the question of how to improve the reliability of generation is an
active question (Gao et al., 2022). Despite these limitations, today’s large models will become cheaper with
experience (Hirschmann, 1964), and so a growing proportion of scientific knowledge will enter weight
memory as training and re-training costs fall. In this work we perform probes to investigate Galactica’s depth
of knowledge, and show that the ability to absorb scientific knowledge improves smoothly with scale.

Retrieval-Augmented Models Retrieval-augmented models aim to alleviate the shortcomings of weight
memory. Examples of such models include RAG, RETRO and Atlas (Lewis et al., 2020b; Borgeaud et al., 2021;
Izacard et al., 2022). These models have the advantage of requiring less capacity but the disadvantage of
needing supporting retrieval infrastructure. Since knowledge is often fine-grained, e.g. the sequence of a
particular protein, or the characteristics of a particular exoplanet, retrieval will likely be needed in future
even for larger models. In this work we focus on how far we can go with model weights alone, but we note
the strong case for using retrieval augmentation for future research on this topic.

2One of the larger corpora S2ORC has < 20bn tokens, whereas corpora for GPT-3 and PaLM have ≥ 300bn tokens.
ScholarBERT has a very large corpus at >200bn tokens, but the model is small at 770M capacity.
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Modality Entity Sequence

Text Abell 370 Abell 370 is a cluster...

LATEX Schwarzschild radius r_{s} = \frac{2GM}{c^2}

Code Transformer class Transformer(nn.Module)

SMILES Glycine C(C(=O)O)N

AA Sequence Collagen α-1(II) chain MIRLGAPQTL..

DNA Sequence Human genome CGGTACCCTC..

Table 1: Tokenizing Nature. Galactica trains on text sequences that represent scientific phenomena.

Total dataset size = 106 billion tokens
Data source Documents Tokens Token %
Papers 48 million 88 billion 83.0%
Code 2 million 7 billion 6.9%
Reference Material 8 million 7 billion 6.5%
Knowledge Bases 2 million 2 billion 2.0%
Filtered CommonCrawl 0.9 million 1 billion 1.0%
Prompts 1.3 million 0.4 billion 0.3%
Other 0.02 million 0.2 billion 0.2%

Table 2: The Galactica Corpus. A full breakdown of these sources is contained in the Appendix.

3 Dataset
“Nature is written in that great book which ever is before our eyes – I mean the universe –
but we cannot understand it if we do not first learn the language and grasp the symbols in
which it is written."

Galileo Galilei, The Assayer

The idea that Nature can be understood in terms of an underlying language has a long history (Galilei,
1623; Wigner, 1959; Wheeler, 1990). In recent years, deep learning has been used to represent Nature, such
as proteins and molecules (Jumper et al., 2021; Ross et al., 2021). Amino acids are an alphabet in which
the language of protein structure is written, while atoms and bonds are the language of molecules. At a
higher level, we organize knowledge through natural language, and many works have trained on scientific
text (Beltagy et al., 2019; Lewis et al., 2020a; Gu et al., 2020; Lo et al., 2019b). With Galactica, we train a single
neural network on a large scientific corpus to learn the different languages of science.
Our corpus consists of 106 billion tokens from papers, reference material, encyclopedias and other scientific
sources. We combine natural language sources, such as papers and textbooks, and natural sequences, such
as protein sequences and chemical formulae. We process LATEX where we can capture it, and also include
academic code to capture computational science. We highlight the corpus details in Table 1 and 2. Full details,
including dataset components and filtering logic, are contained in the Appendix.
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[START_AMINO]MIRLGAPQTLVLLTLLVAAVLRCQGQDVQEAGSCVQDGQRYNDKDVWKPEPCRICVCDTG...[END_AMINO]

Summary

Protein: Collagen alpha-1(II) chain
Gene: COL2A1
Organism: Homo sapiens (Human)
Status: evidence at protein level

Function

Type II collagen is specific for cartilaginous tissues. It is essential for the normal embryonic development of the
skeleton, for linear growth and for the ability of cartilage to resist compressive forces. [START_REF]Nucleotide
sequence of the full length cDNA encoding for human type II procollage, Lee[END_REF]...

Features
- Domain, 32-90, Cleavage; by procollagen N-endopeptidase
- Site Cleavage, 181-182, Cleavage; by procollagen N-endopeptidase
- Binding site, 1301, Ca2+
...

Figure 1: Multi-Modal Data. A protein sequence occurs in a document context along with annotations, text
and citations from UniProt. Full contents of the document are cut for clarity of exposition.

Notably the dataset is small and curated compared to other LLM corpuses, which are larger and uncurated.
This is a key question of this work: can we make a working LLM based on a curated, normative paradigm? If
true, we could make more purposefully-designed LLMs by having a clear understanding of what enters the
corpus, similar to expert systems which had normative standards (Jackson, 1990).

3.1 Tokenization

Tokenization is an important part of dataset design given the differentmodalities present. For example, protein
sequences are written in terms of amino acid residues, where character-based tokenization is appropriate. To
achieve the goal of specialized tokenization, we utilize specialized tokens for different modalities:

1. Citations: we wrap citations with special reference tokens [START_REF] and [END_REF].
2. Step-by-Step Reasoning: we wrap step-by-step reasoning with a working memory token <work>,

mimicking an internal working memory context.
3. Mathematics: for mathematical content, with or without LaTeX, we split ASCII operations into

individual characters. Parentheses are treated like digits. The rest of the operations allow for unsplit
repetitions. Operation characters are !"#$%&’*+,-./:;<=>?\^_‘| and parentheses are ()[]{}.

4. Numbers: we split digits into individual tokens. For example 737612.62 -> 7,3,7,6,1,2,.,6,2.
5. SMILES formula: we wrap sequences with [START_SMILES] and [END_SMILES] and apply character-

based tokenization. Similarly we use [START_I_SMILES] and [END_I_SMILES] where isomeric
SMILES is denoted. For example, C(C(=O)O)N→ C,(,C,(,=,O,),O,),N.

6. Amino acid sequences: we wrap sequences with [START_AMINO] and [END_AMINO] and apply
character-based tokenization, treating each amino acid character as a single token. For example,
MIRLGAPQTL -> M,I,R,L,G,A,P,Q,T,L.

7. DNA sequences: we also apply a character-based tokenization, treating each nucleotide base
as a token, where the start tokens are [START_DNA] and [END_DNA]. For example, CGGTACCCTC ->
C, G, G, T, A, C, C, C, T, C.

We cover a few of the specialized token approaches below that do not have clear parallels in the literature, in
particular the working memory and citation tokens.
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Figure 2: Given a task like "What is the average of 43, 29, 51, 13?" a human can use internal or external
working memory. In practice, they will use both symbiotically; meaning that working out that is written
down in text is usually "missing" some steps performed internally.

3.1.1 Working Memory Token, <work>

Transformer-based architectures lack an explicit working memory capability, which means a single-forward
pass has limited efficacy. This is problematic for tasks that require multiple steps of computation. A current
workaround is using a Transformer’s output context as an external working memory to read from and write
to. This is seen in recent work on chain-of-thought prompting (Wei et al., 2022; Suzgun et al., 2022). In one
sense this is intuitive, as humans also augment their limited working memory with scratchpads. In another
sense, we would like models to refine their representations internally like humans; e.g. mental arithmetic.
There are two limitations with chain-of-thought. First, it relies on prompt discovery to find a prompt that
elicits robust step-by-step reasoning; i.e. minimizes mistakes from doing too much in a single forward pass.
Not only does this require finding a robust prompt that works in all cases, but it also often relies on few-shot
examples which take up context space. What is worse, much of the step-by-step reasoning on the internet
misses intermediate steps that a human has performed using internal memory. Humans do not write down
every step they perform because it would lead to long and tedious answers. They write down the principal
steps of reasoning, and do lower-level steps via internal working memory. This means there is "missing data"
in written text, i.e. between written steps there are internal memory steps that are not explicitly stated.
Secondly, chain-of-thought prompting uses the neural network to perform tasks that it is arguably not best
suited to doing; for example, arithmetic. Prior work has shown that accuracy on tasks like multiplication is
proportional to term frequency (Razeghi et al., 2022). Given that classical computers are specialized for tasks
like arithmetic, one strategy is to offload these tasks from the neural network to externalmodules. For example,
prior work has looked at the possibilities of external tool augmentation, such as calculators (Thoppilan et al.,
2022). However, this requires a strategy to identify where the neural network should offload; and it may
not be straightforward when combined with a discovered zero-shot prompt, especially where lower-level
computation steps are not explicitly stated in writing.
Our solution is a working memory token we call <work>. We construct a few prompt datasets, see Table
3, that wrap step-by-by-step reasoning within <work> </work>. Some of these datasets were generated
programmatically (OneSmallStep), by creating a problem template and sampling the variables, others were
sourced online (Workout, Khan Problems), and others used existing datasets and transformed them into a
<work> based context (GSM8k train). Where a computation is performed that a human could not do internally,
we offload by writing and executing a Python script. An example is shown in Figure 3. Importantly, we
do not have to turn this on, and the model can also predict the output from running a program. For our
experiments, we did not find the need to turn Python offloading on, and leave this aspect to future work.
Longer term, an architecture change may be needed to support adaptive computation, so machines can have
internal working memory on the lines of work such as adaptive computation time and PonderNet (Graves,
2016; Banino et al., 2021). In this paper, we explore the <work> external working memory approach as a
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Question: A needle 35 mm long rests on a water surface at 20◦C. What force over and above the needle’s weight
is required to lift the needle from contact with the water surface? σ = 0.0728m.

<work>

σ = 0.0728 N/m

σ = F/L

0.0728 = F/(2× 0.035)

F = 0.0728(2× 0.035)

calculate.py
‘‘‘
f = 0.0728*(2*0.035)

with open("output.txt", "w") as file:
file.write(str(round(f, 5)))

‘‘‘

«run: "calculate.py">

«read: "output.txt"»

0.0051

</work>

Answer: F = 0.0051 N

Figure 3: Model-Machine Symbiosis. We show an example answer with the <work> working memory
token. It performs exact steps for rearranging the equation, and when it reaches a calculation that it cannot
solve reliably in a forward-pass, it writes a program, which can then be offloaded to a classical computer.

Data source Split Prompts Tokens
GSM8k (Cobbe et al., 2021) train 7,473 3,518,467
OneSmallStep n/a 9,314 3,392,252
Khan Problems (Hendrycks et al., 2021) n/a 3,835 1,502,644
Workout n/a 921 470,921
Total 21,543 9 million

Table 3: Reasoning Datasets To train the model to use <work> we include several datasets in pre-training
that incorporate this token. Full details are contained in the Appendix.

bridge to the next step. Notably our <work> prompt datasets are not very large or diverse, so there are likely
large further gains to be made with this approach.
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3.1.2 Citation Token

Adistinctive properties of academic text is citations. In order to represent the implicit citation graphwithin the
text, we process citations with global identifiers and special tokens [START_REF] and [END_REF] signifying
when a citation is made. Figure 4 shows an example of citation processed text from a paper.

Recurrent neural networks, long short-term memory [START_REF]Long Short-Term Memory,
Hochreiter[END_REF] and gated recurrent [START_REF]Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling, Chung[END_REF] neural networks in particular, have been firmly estab-
lished as state of the art approaches in sequence modeling and transduction problems such as language
modeling and machine translation [START_REF]Sequence to Sequence Learning with Neural Networks,
Sutskever[END_REF][START_REF]Neural Machine Translation by Jointly Learning to Align and Translate,
Bahdanau[END_REF][START_REF]Learning Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation, Cho[END_REF].

Figure 4: Citation Processed Text. Example of citation processed text from Attention Is All You Need (Vaswani
et al., 2017). For title-processed citations, the title can be associated with the previous context.

We considered two type of citation identifier: (a) paper titles and (b) alphanumeric IDs. Based on ablations,
we found that title based identifiers have greater citation prediction accuracy than IDs. However, we also
found that paper titles are more prone to hallucination error at lower scales given the text-based nature of the
identifier. We consider title processing for this paper, but we note the trade-offs between both approaches.
Experiments for these ablations are contained in the Appendix.

3.2 Prompt Pre-Training

We deviate from existing language model research in one important direction, which is our decision to
include prompts in pre-training alongside the general corpora. This is motivated by a number of observations.
First, existing work has shown the importance of training token count on performance. The Chinchilla
paper derived scaling "laws" taking into account number of tokens, training a 70bn model for 1.4 trillion
tokens (Hoffmann et al., 2022). They obtained state-of-the-art performance on MMLU, beating much larger
models such as Gopher (Rae et al., 2021).
Separately, research such as FLAN and T0 showed prompt tuning can boost downstream performance (Wei
et al., 2021; Sanh et al., 2021; Chung et al., 2022). Their strategy involved converting tasks to text prompts,
using prompt diversity in how the tasks are posed, and then fine-tuning on these prompt datasets. For FLAN
and T0, this approach boosts performance, beating larger models such as GPT-3 on many tasks.
And additionally there is the UnifiedQA approach (Khashabi et al., 2020). In this approach, a T5 model is
fine-tuned on question answering datasets, and is shown to boost performance on out-of-domain question
answering datasets (Raffel et al., 2020). The model outperforms GPT-3 on MMLU, a model 16 times larger.
The first stream of research above focuses on total training tokens as a way to boost performance; i.e. it is
token agnostic. The second stream of research focuses on task-context tokens as a way to boost performance;
i.e. it is token selective. Since fine-tuned smaller models beat larger few-shot models on tasks like MMLU, this
suggests world knowledge may be present in smaller models, but task-context knowledge may be poor given
the relative number of task-context tokens seen in the general corpus.
For this paper, we opt to augment pre-training data with more task prompts to boost performance at lower
scales. This is advantageous if it obviates the need for more data scale, e.g. a >1 trillion corpus, or more
model scale. The largest 120B model we train runs on a single NVIDIA A100 node. Additionally, given that
fine-tuning requires expertise, making the model work out-the-box for popular tasks like question answering
and summarization is more useful for users of the model. Lastly, by including prompts alongside general
data, we maximize the generality of the model while boosting performance on some tasks of interest.
The closest analog to this approach for large language models is ExT5 (Aribandi et al., 2021). We take a
similar approach by taking many machine learning training datasets, converting them to a text format, with
prompt diversity, and then including them alongside general corpora in our pre-training set. A summary of
prompt types is given in Table 4; the full details of datasets and prompts used are covered in the Appendix.
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Figure 5: Prompt Pre-training. Pre-training weighs all tokens equally as part of the self-supervised loss. This
leads to a weak relative signal for tasks of interest, meaning model scale has to be large to work. Instruction
tuning boosts performance post hoc, and can generalize to unseen tasks of interest, but it risks performance in
tasks that are distant from instruction set tasks. Prompt pre-training has a weaker task of interest bias than
instruction tuning but less risk of degrading overall task generality.

Task Prompts Tokens
Chemical Properties 782,599 275 million
Multiple-Choice QA 256,886 31 million
Extractive QA 30,935 13 million
Summarization 6,339 11 million
Entity Extraction 156,007 9 million
Reasoning 21,543 9 million
Dialog 18,930 5 million
Binary QA 36,334 4 million
Other 3,559 1 million
Total 783,599 358 million

Table 4: Pre-training Prompts. We include zero-shot prompts in pre-training to boost the task signal.

Because of prompt inclusion, it is important to distinguish between in-domain performance, where the
training dataset is included in pre-training, and out-of-domain performance, where the training dataset is not
included in pre-training. We mark these results clearly in the Results section of this paper. Importantly, we
do not advocate for prompt pre-training as an alternative to instruction tuning. In fact, instruction tuning on
Galactica is likely useful follow-up work given its potential to boost performance on several tasks of interest.
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4 Method
4.1 Architecture

Galactica uses a Transformer architecture in a decoder-only setup (Vaswani et al., 2017), with the following
modifications:

• GeLU Activation - we use GeLU activations for all model sizes (Hendrycks and Gimpel, 2016).
• Context Window - we use a 2048 length context window for all model sizes.
• No Biases - following PaLM, we do not use biases in any of the dense kernels or layer norms (Chowd-

hery et al., 2022).
• Learned Positional Embeddings - we use learned positional embeddings for the model. We experi-

mented with ALiBi at smaller scales but did not observe large gains, so we did not use it (Press et al.,
2021).

• Vocabulary - we construct a vocabulary of 50k tokens using BPE (Sennrich et al., 2015). The
vocabulary was generated from a randomly selected 2% subset of the training data.

4.2 Models

The different model sizes we trained, along with training hyperparameters are outlined in Table 5.

Model nparams nlayers dmodel nheads dheads Batch Size Max LR Warmup
GAL 125M 125M 12 768 12 64 0.5M 6× 10−4 375M
GAL 1.3B 1.3B 24 2,048 32 64 1.0M 2× 10−4 375M
GAL 6.7B 6.7B 32 4,096 32 128 2.0M 1.2× 10−4 375M
GAL 30B 30.0B 48 7,168 56 128 2.0M 1× 10−4 375M
GAL 120B 120.0B 96 10,240 80 128 2.0M 0.7× 10−5 1.125B

Table 5: Details of the models trained

We train using AdamW with β1 = 0.9, β2 = 0.95 and weight decay of 0.1 (Loshchilov and Hutter, 2017). We
clip the global norm of the gradient at 1.0, and we use linear decay for learning rate down to 10% of it value.
We use dropout and attention dropout of p = 0.1. We do not use embedding dropout. We found longer
warmup was important for the largest model in the early stages of training to protect against the effects of bad
initialization, which can have long-memory effects on the optimizer variance state and slow down learning.
This may be specific to our model and training setup, and it is not clear whether this advice generalizes.

4.3 Libraries and Infrastructure

We use the metaseq library3 for training the models, built by the NextSys team at Meta AI.
For training the largest 120B model, we use 128 NVIDIA A100 80GB nodes. For inference Galactica 120B
requires a single A100 node. We choose the maximum model size to obey this constraint for downstream
accessibility, and we will work to improve its accessibility for the research community in coming months.

3https://github.com/facebookresearch/metaseq/
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Figure 6: Repeated Tokens and Validation Loss. With four epochs of training, we continue to see validation
loss fall for all model sizes. For the 120B model we see the first signs of overfitting at the beginning of the
fifth epoch, and we early stop at this point.

5 Results
5.1 Repeated Tokens Considered Not Harmful

We train the models for 450 billion tokens, or approximately 4.25 epochs. We find that performance continues
to improve on validation set, in-domain and out-of-domain benchmarks with multiple repeats of the corpus.
First, from Figure 6, validation loss continues to fall with four epochs of training. The largest 120B model
only begins to overfit at the start of the fifth epoch. This is unexpected as existing research suggests repeated
tokens can be harmful on performance (Hernandez et al., 2022). We also find the 30B and 120B exhibit a
epoch-wise double descent effect of plateauing (or rising) validation loss followed by a decline. This effect
becomes stronger with each epoch, and is most visible above with the 120B model towards end of training.
To investigate further, we examine the per-source breakdown of validation loss to see if there is heterogeneity
in loss behaviour. We plot example curves in Figure 23 overleaf for the 30B model. We see no signs of loss
heterogeneity: loss falls for all sources. The 120B exhibits the same relative trend of declining validation loss
for all sources until the beginning of fifth epoch, where all sources spike (see Appendix).
The next question to answer is whether this trend extends to downstream performance and out-of-domain
generalization. For this we use a 57 task subset of BIG-bench subset, a general corpus with principally non-
scientific tasks and prompt types not included in pre-training (Srivastava et al., 2022). We plot results in
Figure 8. We see no signs of overfitting suggesting that use of repeated tokens is improving downstream
performance as well as upstream performance.
We suspect that two factors could be at play, a quality factor, the curated nature of the corpus enables more
value per token to be extracted, or a modality factor, the nature of scientific data enables more value per
token to be extracted. The missing step of causation is what leads specifically from either factor towards less
overfitting, and we leave this question to further work. We note the implication that the "tokens → ∞" focus
of current LLM projects may be overemphasised versus the importance of filtering the corpus for quality.
In the following sections, we turn to evaluating Galactica’s scientific capabilities. Specifically, we focus on the
high-level design goals of building an LLM that can store, combine and reason about scientific knowledge -
as these are needed for building a new interface for science.
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Figure 7: Validation Loss Per Source. Validation loss falls through training for all dataset categories. Results
are shown for the 30B model above. The 120B exhibits the same relative trend of declining validation loss for
all sources until the beginning of fifth epoch, where all sources spike (see Appendix).

Figure 8: BIG-bench Performance During Training. The 57 task selection from BIG-bench contains princi-
pally non-scientific tasks. We use it as a proxy for out-of-domain performance. For the 120B model above, we
see no signs of overfitting after four repeats of the corpus.
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5.2 Knowledge Probes

First, we examine how well Galactica absorbs scientific knowledge. We set up several knowledge probe
benchmarks, building off the LAMA approach of Petroni et al. (2019). These were critical metrics during
model development for identifying knowledge gaps within the corpus, and informing how to iterate the
corpus. They also provide insight into the relative knowledge strengths of Galactica versus general language
models, and we cover these results in this section before turning to the downstream tasks.

5.2.1 LaTeX Equations

We construct a dataset of popular LaTeX equations from the fields of chemistry, physics, mathematics, statistics
and economics. Memorisation of equations is useful to measure as it is necessary for many downstream
tasks; for example, recalling an equation to use as part of an answer to a problem. Unless stated explicitly,
Galactica results are reported as zero-shot. In total there are 434 equations we test for the knowledge probe.
We prompt with an equation name and generate LaTeX. An example is shown in Figure 9.

Prompt

The formula for Bessel’s differential equation is:

Generated Answer

x2
d2y

dx2
+ x

dy

dx
+

(
x2 − α2) y = 0

Figure 9: LaTeX Equations Probe. We prompt for the name of an equation and evaluate whether the
generated LaTeX is correct. We manually evaluate given the possibility of multiple correct answers.

We summarize the results in Table 6. Equation knowledge increases smoothly with scale. Galactica outper-
forms larger language models trained on general corpuses, indicating the value of a curated dataset.

Model Params (bn) Chemistry Maths Physics Stats Econ Overall
OPT 175 34.1% 4.5% 22.9% 1.0% 2.3% 8.9%
BLOOM 176 36.3% 36.1% 6.6% 14.1% 13.6% 21.4%
GPT-3 (text-davinci-002) ? 61.4% 65.4% 41.9% 25.3% 31.8% 49.0%
GAL 125M 0.1 0.0% 0.8% 0.0% 1.0% 0.0% 0.5%
GAL 1.3B 1.3 31.8% 26.3% 23.8% 11.1% 4.6% 20.5%
GAL 6.7B 6.7 43.2% 59.4% 36.2% 29.3% 27.3% 41.7%
GAL 30B 30 63.6% 74.4% 35.2% 40.4% 34.1% 51.5%
GAL 120B 120 79.6% 83.5% 72.4% 52.5% 36.4% 68.2%

Table 6: Results on LaTeX equations. Results are evaluated zero-shot.

5.2.2 Domain Probes

We also set up domain probes to track specialized knowledge for certain fields. We detail these below:
• AminoProbe: a dataset of names, structures and properties of the 20 common amino acids.
• BioLAMA: a dataset of biomedical factual knowledge triples.
• Chemical Reactions: a dataset of chemical reactions.
• Galaxy Clusters: a dataset of galaxy clusters with their constellation classifications.
• Mineral Groups: a dataset of minerals and their mineral group classifications.

In each case, we construct a prompt to test the knowledge. For example, for Chemical Reactions, we ask
Galactica to predict the products of the reaction in the chemical equation LaTeX. We mask out products in
the description so the model is inferring based on the reactants only. An example is shown in Figure 10.
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Prompt

Sulfuric acid reacts with sodium chloride, and gives _____ and _____:

\[ \ce{ NaCl + H2SO4 ->

Generated Answer

NaCl + H2SO4 −−→ NaHSO4 +HCl

Figure 10: Chemical Reactions. We prompt based on a description and reactants, and evaluate whether the
generated products are correct.

We report results for these knowledge probes in Table 7.

Model Params (bn) Amino BioLAMA Reactions Clusters Minerals
OPT 175 12.0% 7.1% 12.7% 21.7% 1.6%
BLOOM 176 14.0% 9.7% 22.4% 15.0% 10.3%
GPT-3 (text-davinci-002) ? 14.0% 8.4% 35.1% 20.8% 18.3%
GAL 125M 0.1 12.0% 3.1% 0.3% 6.7% 0.0%
GAL 1.3B 1.3 16.0% 7.2% 14.4% 14.2% 10.3%
GAL 6.7B 6.7 17.0% 7.9% 26.4% 17.5% 8.7%
GAL 30B 30 21.0% 6.9% 36.5% 20.0% 17.5%
GAL 120B 120 21.0% 8.0% 43.1% 24.2% 29.4%

Table 7: Results on Domain Probes. Results are evaluated zero-shot.

We also observe steady scaling behaviour in these knowledge probes, with the exception of BioLAMA which
we suspect reflects zero-shot prompt difficulty for all LLMs. Notably fine-grained factual knowledge, such as
"ConstellationOf(GalaxyCluster)" type-queries seems to scale smoothly with the size of the model.
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5.2.3 Reasoning

We now turn to reasoning capabilities with the <work> token. We start by evaluating on theMMLU math-
ematics benchmarks, which we report in Table 8 (Hendrycks et al., 2020). Galactica performs strongly
compared to larger base models, and use of the <work> token appears to boost performance over Chinchilla,
even for the smaller 30B Galactica model.

Mathematics MMLU
Model Params (bn) A.Algebra Elem HS College F. Logic Average
BLOOM (5-shot) 176 25.0% 26.7% 27.0% 25.0% 26.2% 26.4%
OPT (5-shot) 175 21.0% 25.7% 24.4% 33.0% 29.4% 26.7%
Gopher (5-shot) 280 25.0% 33.6% 23.7% 37.0% 35.7% 30.6%
Chinchilla (5-shot) 70 31.0% 41.5% 31.9% 32.0% 33.3% 35.7%
GAL 1.3B 1.3 28.0% 27.2% 26.7% 30.0% 24.6% 27.1%
GAL 6.7B 6.7 28.0% 28.9% 26.7% 36.0% 31.0% 29.2%
GAL 30B 30 30.0% 30.2% 26.3% 36.0% 31.7% 29.9%
GAL 120B 120 33.0% 38.1% 32.6% 43.0% 32.5% 35.8%
GAL 1.3B <work> 1.3 22.0% 24.6% 18.9% 25.0% 31.0% 24.6%
GAL 6.7B <work> 6.7 33.3% 30.7% 25.2% 26.0% 33.3% 28.0%
GAL 30B <work> 30 33.0% 41.5% 33.3% 39.0% 37.3% 37.1%
GAL 120B <work> 120 27.0% 54.2% 37.0% 44.0% 40.5% 41.3%

Table 8: Results on Mathematics MMLU. Galactica is evaluated without few-shot examples. With the
<work> token we see large gains in performance. Results are on MMLU test.

We also evaluate on the MATH dataset to further probe the reasoning capabilities of Galactica (Hendrycks
et al., 2021). We compare the <work> token prompt directly with the Minerva 5-shot chain-of-thought prompt
mCoT for comparability. We report results in Table 9.

MATH Results
Model Alg CProb Geom I.Alg N.Theory Prealg Precalc Average

Base Models
GPT-3 175B (8-shot) 6.0% 4.7% 3.1% 4.4% 4.4% 7.7% 4.0% 5.2%
PaLM 540B (5-shot) mCoT 9.7% 8.4% 7.3% 3.5% 6.0% 19.2% 4.4% 8.8%
GAL 30B <work> 15.8% 6.3% 5.8% 4.9% 2.4% 19.4% 8.2% 11.4%
GAL 30B (5-shot) mCoT 17.9% 6.8% 7.9% 7.0% 5.7% 17.9% 7.9% 12.7%
GAL 120B <work> 23.1% 10.1% 9.8% 8.6% 6.5% 23.8% 11.7% 16.6%
GAL 120B (5-shot) mCoT 29.0% 13.9% 12.3% 9.6% 11.7% 27.2% 12.8% 20.4%

Fine-tuned LaTeX Models
Minerva 540B (5-shot) mCoT 51.3% 28.0% 26.8% 13.7% 21.2% 55.0% 18.0% 33.6%

Table 9: Results on MATH. With both the chain-of-thought and <work> token prompts, Galactica exceeds
PaLM’s performance with 18 times less capacity.

We see that Galactica outperforms the base PaLM model by a significant margin, with both chain-of-thought
and <work> prompts. Galactica 30B outperforms PaLM 540B on both prompts: an 18 times smaller model.
This suggests Galactica may be a better base model for fine-tuning towards mathematical tasks.
We report Minerva results for completeness, which is a 540B PaLM fine-tuned towards LaTeX specifically.
Minerva outperforms base Galactica, but the performance differences are non-uniform; which points towards
different mathematical data biases. For a direct comparison to Minerva, the model is freely available for
those who want to finetune Galactica towards LaTeX specifically as follow-up work.
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5.3 Downstream Scientific NLP

We now evaluate on downstream scientific tasks to see how well Galactica can compose its knowledge in
different task contexts. We focus on knowledge-intensive scientific tasks and report full results in Table 10.
For this we use the MMLU benchmark as well as some other popular scientific QA benchmarks. We include
the MMLU results earlier without <work> to test for knowledge association specifically. Full MMLU results,
including social sciences and other fields, are reported in the Appendix. We also perform data leakage
analysis on these benchmarks for more confidence; results are in the Appendix.
From Table 10, Galactica can compose its knowledge into the question-answering task, and performance
is strong; significantly outperforming the other open language models, and outperforming a larger model
(Gopher 280B) in the majority of tasks. Performance against Chinchilla is more variable, and Chinchilla
appears to be stronger in a subset of tasks: in particular, high-school subjects and less-mathematical, more
memorization intensive tasks. In contrast, Galactica tends to perform better in mathematical and graduate-
level tasks.
Our working hypothesis is that the Galactica corpus is biased towards graduate scientific knowledge, given it
consists mostly of papers, which explains lagging performance in high-school subjects. While we do pick
up some high-school level content through encyclopedias, textbooks and the filtered CommonCrawl, this
amounts to a small quantity of tokens (a few billion). We leave the question of how to capture more of this
base scientific knowledge in a curated way to future work.
On remaining tasks, we achieve state-of-the-art results over fine-tuned models at the time of writing. On
PubMedQA, we achieve a score of 77.6% which outperforms the state-of-the-art of 72.2% (Yasunaga et al.,
2022). On MedMCQA dev we achieve score of 52.9% versus the state-of-the-art of 41.0% (Gu et al., 2020).
For BioASQ and MedQA-USMLE, performance is close to the state-of-the-art performance of fine-tuned
models (94.8% and 44.6%) (Yasunaga et al., 2022).

Dataset Domain GAL OPT BLOOM GPT-3 Gopher Chinchilla
Abstract Algebra out-of-domain 33.3% 21.0% 25.0% - 25.0% 31.0%
ARC Challenge in-domain 67.9% 31.1% 32.9% 51.4% - -
ARC Easy in-domain 83.8% 37.4% 40.7% 68.8% - -
Astronomy out-of-domain 65.1% 23.0% 25.7% - 65.8% 73.0%
BioASQ in-domain 94.3% 81.4% 91.4% - - -
Biology (College) out-of-domain 68.8% 30.6% 28.5% - 70.8% 79.9%
Biology (High-School) out-of-domain 69.4% 27.7% 29.4% - 71.3% 80.3%
Chemistry (College) out-of-domain 46.0% 30.0% 19.0% - 45.0% 51.0%
Chemistry (High-School) out-of-domain 47.8% 21.7% 23.2% - 47.8% 58.1%
Comp. Science (College) out-of-domain 49.0% 17.0% 6.0% - 49.0% 51.0%
Comp. Science (High-School) out-of-domain 70.0% 30.0% 25.0% - 54.0% 58.0%
Econometrics out-of-domain 42.1% 21.0% 23.7% - 43.0% 38.6%
Electrical Engineering out-of-domain 62.8% 36.6% 32.4% - 60.0% 62.1%
Elementary Mathematics out-of-domain 38.1% 25.7% 27.6% - 33.6% 41.5%
Formal Logic out-of-domain 32.5% 29.4% 26.2% - 35.7% 33.3%
Machine Learning out-of-domain 38.4% 28.6% 25.0% - 41.1% 41.1%
Mathematics (College) out-of-domain 43.0% 33.0% 25.0% - 37.0% 32.0%
Mathematics (High-School) out-of-domain 32.6% 24.4% 27.0% - 23.7% 31.9%
Medical Genetics out-of-domain 70.0% 35.0% 36.0% - 69.0% 69.0%
Physics (College) out-of-domain 42.2% 21.6% 18.6% - 34.3% 46.1%
Physics (High-School) out-of-domain 33.8% 29.8% 25.2% - 33.8% 36.4%
MedQA-USMLE out-of-domain 44.4% 22.8% 23.3% - - -
MedMCQA Dev in-domain 52.9% 29.6% 32.5% - - -
PubMedQA in-domain 77.6% 70.2% 73.6% - - -
Statistics (High-School) out-of-domain 41.2% 43.5% 19.4% - 50.0% 58.8%

Table 10: Question Answering Results. Galactica is evaluated without few-shot examples. Other LLMs are
evaluated 5-shot, except for 0-shot results for GPT-3 on ARC results and OPT and BLOOM on PubMedQA
and BioASQ. For abstract algebra and medical genetics, we obtained best results with 30B, so we report these
scores; the 120B scores for these were 27.0% and 68.0% respectively. Rest of results are for 120B.
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5.4 Citation Prediction

In this section we evaluate Galactica’s capability to predict citations given an input context, which is an
important test of Galactica’s capability to organize the scientific literature. We find that both accuracy and
the quality of distributional approximation improves with scale.

5.4.1 Citation Accuracy

We construct three datasets to evaluate the model’s capability to cite:

• PWC Citations: a dataset with 644 pairs of machine learning concepts and papers that introduced
them. Concepts consist of methods (e.g. ResNet) and datasets (e.g. ImageNet) from Papers with Code4.

• Extended Citations: a dataset with 110 pairs of non-machine learning concepts and papers that
introduced them. Examples of concepts include Kozac sequence and Breit-Wigner distribution.

• Contextual Citations: a dataset with 1,869 pairs of references and contexts from our arXiv validation
set. The dataset is constructed by sampling 1,000 random references and collecting their contexts.

For the PWC Citations and Extended Citations datasets, the citation prediction task is framed as a text
generation task. The model is given a prompt like "In this paper we use ResNet method [START_REF]" in
order to generate a prediction for the ResNet concept. For Contextual Citations, we prompt after the input
context for the citation, where the context ends with [START_REF].
We compare Galactica to sparse and dense retrieval-based approaches on this task.
For the sparse baseline, we use ElasticSearch to create an index of all the references, including their titles,
abstracts, and short snippets of text with the contexts they appear in. Then, given a text query, we retrieve
the top references ordered by the sum of matching scores across all selected fields.
For dense retriever baselines, we evaluate two different Contriever models (Izacard et al., 2021). The first is
the pre-trained model released by Izacard et al. (2021). The second model we use is fine-tuned on a random
subset of 10 million context/paper pairs from our corpus, trained to retrieve the right paper given a context
before a citation. The setup for dense retrieval is: (1) each reference is encoded by the model using its title
and abstract, (2) a text query is encoded by the same model, (3) the references that match the query re
returned. Retrieval is performed using a FAISS index (Johnson et al., 2019).
The results can be seen in Table 11.

Model Params (bn) PWC Citations Extended Citations Contextual Citations
GAL 125M 0.1 7.0% 6.4% 7.1%
GAL 1.3B 1.3 18.5% 45.5% 15.9%
GAL 6.7B 6.7 32.0% 60.0% 23.0%
GAL 30B 30 44.7% 66.4% 31.5%
GAL 120B 120 51.9% 69.1% 36.6%
Sparse Retriever n/a 30.9% 17.3% 5.3%
Dense Retriever (base) n/a 16.4% 8.8% 1.6%
Dense Retriever (fine-tuned) n/a 27.6% 11.8% 8.2%
Table 11: Citation Prediction Accuracy. Performance of different model sizes on citation prediction.

The performance on all evaluation sets increases smoothly with scale. At larger scales, Galactica outperforms
the retrieval-based approaches as its context-associative power improves. This is an important result as
current approaches for navigating the literature use these existing retrieval approaches. As the power of
language models improves, we suspect they will become a valuable new tool for exploring the literature.
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(a) Kolmogorov-Smirnov Distance (b) Histogram Overlap

Figure 11: Distributional Comparison of Citations. Galactica’s citation distribution approaches the ground
truth with scale. This is seen through a declining KS distance with scale, and increasing histogram overlap.

Prompt

in the BQ literature as, when p is a mixture of Gaussians, the mean element µp is analytically tractable (see
Appendix C). Some other (p, k) pairs that produce analytic mean elements are discussed in [[START_REF] On
the Equivalence between Kernel Quadrature Rules and Random Feature Expansions, Bach[START_REF]].
For this simulation study, we took p(x) to be a 20-component mixture of 2D-Gaussian distributions. Monte Carlo
(MC) is often used for such distributions but has a slow convergence rate in OP (n

−1/2). FW and FWLS are
known to converge more quickly and are in this sense preferable to MC [[START_REF]

Prediction

On the Equivalence between Herding and Conditional Gradient Algorithms, Bach

Figure 12: Citation Prompt. An example prompt predicting a citation in-context; from Briol et al. (2015).

5.4.2 Citation Distributional Analysis

We now turn to look at how well Galactica can model the empirical citation distribution. For this analysis we
use the Contextual Citations dataset, where prompts are extracted from a paper by taking the context before
a citation as the prompt. An example prompt with a model prediction is shown overleaf in Figure 12.
We use the in-context citation data to analyse the distributional difference between predicted and ground truth
paper counts. This allows us to assess the model bias towards predicting more popular papers. Specifically,
for each context there is a ground truth and predicted reference. We count the number of times each reference
appears in our corpus. We then compare the distribution of reference counts between the ground truth
references and the predicted references using the Kolmogorov-Smirnov distance (Massey, 1951).
The comparison between the citation count distributions for different model sizes can be seen in Figure 11.
Figure 11a shows the decrease in the Kolmogorov-Smirnov distance between the distribution of ground truth
paper citations and the distribution of predicted papers citations. Figure 11b shows how the distribution of
paper counts for the predicted papers gets closer to the ground truth as the model size grows. At smaller
scales the model is more prone to predicting more popular papers. As the model grows in size this bias
towards predicting popular papers diminishes.

4https://paperswithcode.com
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5.5 General Capabilities

We have studied Galactica’s scientific capabilities. It is perhaps not surprising that a specialist scientific model
outperforms general models on scientific tasks, but what would be more surprising was if it outperformed
general models on general NLP tasks. In this section, we show surprising evidence that it does just that.
We evaluate on 57 BIG-bench tasks in Table 12 (Srivastava et al., 2022). The tasks are primarily non-scientific
and test general language capability, for example anachronisms, figure of speech and metaphor boolean.
We always evaluate with 5-shots, and we use the default prompt style from BIG-Bench. Importantly, we do
not include this prompt style in pre-training; so the evaluation between Galactica and the other models is
comparable 5-shot. Full details and results are in the Appendix. We summarize average scores in Table 12:

Model Params (bn) Accuracy Accuracy
weighted unweighted

OPT 30B 30 39.6% 38.0%
BLOOM 176B 176 42.6% 42.2%
OPT 175B 175 43.4% 42.6%
GAL 30B 30 46.6% 42.7%
GAL 120B 120 48.7% 45.3%

Table 12: BIG-bench 57 Task Results. Galactica outperforms general open models at smaller scales.

Both the 30B and 120B Galactica models outperform the larger OPT and BLOOM general models. This is a
surprising result given we designed Galactica to trade-off generality for performance in scientific tasks.
We suspect this result reflects the higher-quality of the Galactica corpus, stemming from the fact it is
curated and also primarily academic text. Previous open LLM efforts likely overfocused on scale goals and
underfocused on data filtering. Another implication is that the focus on tokens → ∞ from Chinchilla needs
to be complemented with strong data quality procedures (Hoffmann et al., 2022). With this paper, we took
an opposite approach by focusing on high-quality tokens and repeated epochs of training. However, the
Chinchilla insight stands: and there is much more scientific text that we have not exploited in this work.

5.6 Chemical Understanding

We now turn to Galactica’s capability to interface with different scientific modalities. We start by looking at
Galactica’s chemical capabilities. Chemical properties exhibit complex correlations which means the chemical
space is very large. Better organization of chemical information through language models could aid chemical
design and discovery. We explore how Galactica can provide a new interface for these tasks in this section.
For this work, we only include a small subset of available compounds from PubChem Compound in pre-
training. Specifically, we take a random subset (2million) of total compounds (110million). This is to ensure
the model is not overly biased towards learning natural sequences over natural language. This is a constraint
we can relax in future work, enabling for much larger corpus. Here we focus on the first step of investigating
whether a single model can learn effectively in the multi-modal setting.
We find that a language model can learn chemical tasks such as IUPAC naming in a self-supervised way, and
in addition, we can pose drug discovery tasks as natural language prompts and achieve reasonable results.

5.6.1 IUPAC Name Prediction

SMILES is a line notation which represents chemical structure as a sequence of characters (Weininger, 1988).
In the Galactica corpus, the SMILES formula occurs alongside information in the document, such as IUPAC
names, molecular weight and XLogP. In the context of self-supervised learning, this means a language model
is performing implicit multi-task learning: the model is predicting the next SMILES token, but can also use
SMILES to predict other entities in the document.
As an initial test, we set up a IUPAC Name Prediction task, where the task is to name a compound according
to the IUPAC nomenclature given a SMILES formula input. The IUPAC nomenclature is a method of naming
organic compounds that has a ruleset based on naming the longest chain of carbons connected by single
bonds (Favre and Powerll). There is a large set of rules and the procedure is algorithmically complex,
meaning it is hard to automate. As a result, it is missing from standard cheminformatics toolkits.
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Previous works such as STOUT and Struct2IUPAC have explored the possiblity of using RNNs and Trans-
formers for this task (Rajan et al., 2021; Krasnov et al., 2021). We explore in this section whether Galactica can
translate a SMILES specification to its IUPAC name in the self-supervised setting. We design a prompt based
on the PubChem structure, with the SMILES as the only input, and the output to predict the IUPAC name.
To evaluate, we use our compound validation set of 17,052 compounds, and prompt with the SMILES formula
and predict the IUPAC name. To calculate accuracy, we use OPSIN to convert the generated IUPAC name to
SMILES, canonicalize it and compare with the canonicalized SMILES target (Lowe et al., 2011).
Results are shown in Table 13.

Model Params (bn) Accuracy Invalid Names
GAL 125M 0.1 0.0% 32.8%
GAL 1.3B 1.3 2.5% 12.0%
GAL 6.7B 6.7 10.7% 12.3%
GAL 30B 30 15.4% 9.7%
GAL 120B 120 39.2% 9.2%

Table 13: Results on IUPAC Naming. Performance improves smoothly with scale.

Accuracy increases smoothly with scale. Given we restricted the corpus to 2 million molecules, it is likely
much better performance is achievable through training or fine-tuning on more molecules. The model is
freely available for those who want to perform this follow-up work.
The more immediate question is what is actually being learnt: is Galactica inferring names from the fun-
damental molecular structure? To answer this, we visualize the average atomic attention at each stage of
a prediction in Figure 13 overleaf. Encouragingly, the results are interpretable in terms of the underlying
chemistry, and Galactica attends to the correct group when predicting a name, e.g. for "amino" it attends
primarily to the −NH2 substituent.
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Task: Convert the SMILES to IUPAC Name

Example: CC(C)(C)C(=O)N(CC1=NC(=CS1)C(=O)OC)C2CCCCC2

Atomic Attention Predicted So Far Token Predicted

- methyl

methyl 2-[[cyclohexyl cyclohexyl

methyl 2-[[cyclohexyl-(2,2- dimethyl

methyl 2-[[cyclohexyl-(2,2-dimethyl prop

methyl 2-[[cyclohexyl-(2,2-dimethylprop anoyl

methyl 2-[[cyclohexyl-(2,2-dimethylpropanoyl) amino

methyl 2-[[cyclohexyl-(2,2-dimethylpropanoyl)]amino]
methyl] th

methyl 2-[[cyclohexyl-(2,2-dimethylpropanoyl)]amino]
methyl]th iazole
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Figure 13: Attending to Functional Groups. Galactica uses its knowledge of chemistry to help with the
IUPAC Naming task. At each stage of prediction, it attends to the part of the molecular graph associated
with the group name, e.g. for "amino" it attends to the nitrogen atom; for thiazole, the sulphur atom.
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5.6.2 MoleculeNet

Wenow explorewhetherwe can pose traditional drug discovery tasks in a natural language format, combining
the different modalities involved. Humans organize knowledge via natural language, and so learning an
interface between natural language and scientific modalities like SMILES could be a new tool for navigating
the chemical space. We use MoleculeNet classification benchmarks to answer this question, which are
summarized in Table 14 (Wu et al., 2017).

Category Dataset Type Other modalities

Biophysics
HIV Classification n/a
BACE C Classification n/a

Physiology
BBBP Classification n/a
Tox21 Classification protein sequences
SIDER Classification n/a
ClinTox Classification n/a

Table 14: MoleculeNet datasets used for evaluation. We convert training sets to text format and include in
pre-training. We evaluate using the splits suggested by the DeepChem library (Ramsundar et al., 2019).

To evaluate, we include the training sets in pre-training by converting to a text format. We use prompt
randomization (varying how the question is posed). For example, for BBBP the training prompt has forms
like in Figure 14 below. These examples occur alongside the other corpuses in training, and each example is
seen just over 4 times. This is not comparable to direct fine-tuning or supervision due to the presence of other
data in pre-training, so it might be considered a form of weak supervision instead.

Here is a SMILES formula:

[START_I_SMILES]O=C(O)CCCC1=CC=C(N(CCCl)CCCl)C=C1[END_I_SMILES]

Question: Will the chemical compound penetrate the blood-brain barrier?

Answer: No

Figure 14: BBBP Prompt. We include the SMILES and pose the classification problem in natural language.

For some MoleculeNet datasets, other modalities are implicitly present. For example, in the Tox21 dataset,
bioassays concern particular receptors such as the androgen receptor (AR). As an experiment, we decided to
frame the task in a text format with the protein sequence and the SMILES as part of the prompt. We show an
example for Tox21 in Figure 15.

Here is a sequence for a protein:

[START_AMINO]MEEPQSDPSVEPPLSQETFSDLWKLLPE...[END_AMINO]

And here is an isomeric SMILES for a compound:

[START_I_SMILES]CC(O)(P(=O)(O)O)P(=O)(O)O[END_I_SMILES]

Question: Will the the chemical compound be active against this protein?

Answer: No

Figure 15: Tox21 Prompt. We include the protein sequence and the SMILES formula and pose the classification
problem in natural language.
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Positive Examples

(a) Danazol (28417) on NR-AR (b) Gestodene (3033968) on NR-AR (c)Mometasone f. (441336) onNR-AR

Negative Examples

(d) γ-Terpinene (7461) on NR-PPAR-γ (e) Bemegride (2310) on NR-AR (f) Arecoline (2230) on NR-PPAR-γ

Figure 16: Attention Visualization on Tox21. The top three molecules are highest confidence positive
examples for the 30B model; the bottom three are the highest confidence negatives. We match attention
weights from the SMILES with the canonical atom ordering. Danazol and gestodene are known to possess
high affinities for the androgen receptor (AR) (Nieschlag et al., 2010).

We make sure to Kekulize the SMILES to be consistent with PubChem representations. For evaluation, we
use the recommended splits from the DeepChem library (Ramsundar et al., 2019).
We present results in Table 15. Performance scales with model size. The scaling is slower than tasks like QA,
and the base model lags a specialist model with explicit 3D information and 10 times more molecules (Zhou
et al., 2022). We suspect the weak supervision setup is harder for this task, and fine-tuning and/or more
molecule data is required to get sufficient task signal. The model is available for work on this.

MoleculeNet Classification
Model Modality Molecules BACE BBBP ClinTox HIV SIDER Tox21 Av.
GAL 125M SMILES 2M 0.561 0.393 0.518 0.702 0.559 0.543 0.581
GAL 1.3B SMILES 2M 0.576 0.604 0.589 0.724 0.540 0.606 0.619
GAL 6.7B SMILES 2M 0.584 0.535 0.784 0.722 0.559 0.639 0.640
GAL 30B SMILES 2M 0.727 0.596 0.822 0.759 0.613 0.685 0.687
GAL 120B SMILES 2M 0.617 0.661 0.826 0.745 0.632 0.689 0.690
Uni-Mol 3D 20M 0.857 0.729 0.919 0.808 0.659 0.796 0.770

Table 15: Results on MoleculeNet Classification. Results are scored by ROC-AUC.

For our purposes, the implication for future work is that we can learn drug discovery tasks via natural
language prompts. If we can learn these relationships automatically in a signal-dense document context (e.g.
online chemical databases), this might reduce the reliance on supervised datasets to perform these tasks.
As a final check, we can average Galactica’s attention heads across layers, and visualize whereabouts the
model looks in the SMILES sequence to make a prediction (atomic attention). We show an example in
Figure 16 for some Tox21 predictions.
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Figure 17: Primary Structure Prediction. For three of the validation sets we observe smooth scaling, reflecting
the potential for high sequence similarity with sequences in the training set; for example, orthologs in the
case of the Paen validation set. The CASP set with sequence similarity constraints levels off, suggesting the
gains from the 550k proteins in training quickly saturates for more out-of-domain sequences.

5.7 Biological Understanding

In this section we examine Galactica’s capability to interface with biological modalities. Language models
could potentially play a role in automatic organisation of this data, for example annotating newly sequenced
proteins with functional information. We explore the potential of this interface in this section.
For protein sequences from UniProt, we include a small subset of available sequences in pre-training. Specifi-
cally, we take reviewed Swiss-Prot proteins; a high-quality subset (0.5 million) of total (227 million). This is
to ensure the model is not overly biased towards learning natural sequences over natural language. As with
molecule data, this is a constraint we can relax in future work, enabling for much larger corpus. Here we
focus on the first step of investigating whether a single model can learn effectively in the multi-modal setting.
We find that a language model can learn an implicit measure of sequence similarity that it can use for tasks
such as functional annotation and descriptions.

5.7.1 Sequence Validation Perplexity

While Galactica does not explicitly model the 3D structure of a protein, the information needed for a specific
conformation is contained in the linear amino acid sequence, which in turn determine function. As a first
step, we test upstream performance through evaluating protein sequence perplexity. Constructing a good
validation set is important and data leakage is a problem for works in this field. We construct four holdout
sets to obtain more confidence about what is being learnt and what generalizes.
First, we conduct BLAST on the sequences in the training set and remove all sequences with a sequence
identity ≥ 50%with 51 CASP14 target sequences. These are the same test sequences used in ESMFold (Lin
et al., 2022b). In total we remove 167 sequences from the training set using this approach. We call this this
holdout set CASPSimilarSeq. We call the 51 CASP14 target sequences CASPSeq.
Secondly, we conduct organism-level holdout, and remove all sequences from the Paenungulata clade of
organisms, including elephants, elephant shrews, manatees and aadvarks. This allows us to test whether
Galactica can annotate sequeces for organisms it has never seen before. In total we remove 109 sequences
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from the training set using this approach. We call this holdout set PaenSeq. Note that this does not enforce
any sequence similarity constraints, and there may be very similar sequences in the training set.
Lastly, we conduct a randomized test split, consisting of 5456 sequences. There is no sequence identity
constraint applied, so memorization may be more at play, but it still provides a signal about the breadth of
sequence knowledge absorbed by the model. We call this holdout set UniProtSeq.
We evaluate perplexity for all holdout sets in Table 16 and plot in Figure 17. For three of the validation sets we
observe smooth scaling, reflecting the potential for high sequence similarity with sequences in the training
set; for example, orthologs in the case of the Paen validation set. Interestingly, the CASP set with sequence
similarity constraints levels off, suggesting the gains from the 550k proteins in training quickly saturates.

Protein Sequence Validation Perplexity
Model Param (bn) CASPSeq CASPSimSeq PaenSeq UniProtSeq
GAL 125M 0.1 20.62 19.18 16.35 19.05
GAL 1.3B 1.3 17.58 17.04 12.53 15.82
GAL 6.7B 6.7 17.29 16.35 7.76 11.58
GAL 30B 30 17.27 15.42 4.28 8.23
GAL 120B 120 17.26 12.77 3.14 5.54

Table 16: Protein Validation Perplexity. Validation sets with higher potential sequence similarity with the
training set have lower perplexity than the restricted sets (CASP validation sets).

To investigate further, we example validation perplexity on the CASPSeq set during training of the 120B
model, and we plot results in Figure 18 below.

Figure 18: CASPSeq Validation During Training. Overfitting occurs before the end of training, but the effect
is not drastic, and repeating the protein sequences three times does not damage performance on this task.
The final 120B model is the second-last point, reflecting the early stopping we applied (see earlier Sections)

We observe falling validation perplexity up until the start of the fourth epoch, at which point the model
overfits for this particular dataset. This may suggest Galactica is getting worse at more "out-of-domain"
proteins that differ significantly from the test set. For future work, less repetition is probably desirable; and
more generally, increasing the diversity of proteins in the training dataset is likely to be beneficial.
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Figure 19: Protein Keyword Prediction. This test’s Galactica’s capability to predict protein keywords, e.g.
"cytoplasm", from the sequence alone. For the Paen and General datasets, this capability improves smoothly
with scale. It scales more slowly and begins to saturate for the CASPSimSeq set, reflecting the lower sequence
similarity with sequences in the training set.

5.7.2 Functional Keyword Prediction

We now look at specific translation capabilities from protein sequence toward natural language, which may
be useful for tasks such as protein annotation. As a first test, we look at UniProt keywords that Galactica can
infer from the sequence. An example of these is shown in Figure 20 overleaf.
We report results in Table 17. F1 score increases across the holdout sets with scale, suggesting that Galactica
can learn keywords by inferring from the sequence. However, we see saturation for the CASPSimSeq,
suggesting this capability depends on how similar the sequences are to those in the training set. This is
reflected in the example in Figure 20, where Galactica uses its knowledge of a similar proteins from different
organisms, with a maximum sequence similarity of 91.8% in the training set, to help annotate.

Protein Keyword Prediction
Model Param (bn) CASPSimSeq PaenSeq UniProtSeq
GAL 125M 0.1 10.5% 9.3% 15.2%
GAL 1.3B 1.3 17.4% 26.0% 21.9%
GAL 6.7B 6.7 18.4% 33.3% 25.1%
GAL 30B 30 22.0% 42.6% 40.8%
GAL 120B 120 21.9% 54.5% 48.7%

Table 17: Protein Keyword Prediction. Metric shown is F1 score. Performance increases with scale across
the holdout sets. Note we do not include CASPSeq as these do not have UniProt keywords we can test against.

We attempted to visualize attention in the protein sequence, but we did not observe anything with biological
intepretation (e.g. attention to domains). Our working hypothesis is that Galactica has learnt an implicit
measure of sequence similarity that it uses to associate predicted keywords, but that this is not directly inter-
pretable from where it attends to. This differs from our chemistry analysis where results were interpretable
in terms of attention to the underlying atomic structure.
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Sequence

Here is the sequence:

[START_AMINO]MQKSPLERASVISKLFFSWPGPILRKGYRQHLKLSDIYQIPSVDSADNLSEKLERE...[END_AMINO]

Ground-Truth Keywords

ATP-binding, Cell membrane, Chloride, Chloride channel, Endoplasmic reticulum, Endosome, Glycoprotein,
Ion channel, Ion transport, Isomerase, Isopeptide bond, Lipoprotein, Membrane, Nucleotide-binding, Nucleus,
Palmitate, Phosphoprotein, Reference proteome, Repeat, Transmembrane, Transmembrane helix, Transport, Ubl
conjugation

Galactica 30B Predicted Keywords

ATP-binding, Cell membrane, Chloride, Chloride channel, Endoplasmic reticulum, Endosome, Glycoprotein,
Ion channel, Ion transport, Isomerase, Isopeptide bond, Lipoprotein, Membrane, Nucleotide-binding, Nucleus,
Palmitate, Phosphoprotein, Reference proteome, Repeat, Transmembrane, Transmembrane helix, Transport, Ubl
conjugation

Figure 20: Protein Keyword Prediction. Example shown is Q108U0 from the PaenSeq holdout, a cystic
fibrosis transmembrane conductance regulator from the African elephant. The closest protein by sequence
similarity in the training set is the Q2QLA3 protein, a cystic fibrosis transmembrane conductance regular
from a horse, with 91.8% sequence similarity.

5.7.3 Protein Function Description

As the next test, we look at generating free-form descriptions of protein function from the sequence. We look
at the UniProt function descriptions and compare to Galactica generated descriptions.
We report results in Table 18. ROUGE-L score increases smoothly across all the holdout sets. We show
an example overleaf in Figure 21 from PaenSeq. The protein is a Cytochrome b protein from a rock hyrax
(Q7Y8J5). The closest sequence by similarity in the training set is a Cytochrome b protein from a pygmy
hippopotamus (O03363) with 83% sequence similarity. In this case we get a perfect prediction from the
description.

Protein Function Prediction
Model Param (bn) CASPSimSeq PaenSeq UniProtSeq
GAL 125M 0.1 0.062 0.073 0.061
GAL 1.3B 1.3 0.069 0.084 0.079
GAL 6.7B 6.7 0.109 0.137 0.111
GAL 30B 30 0.137 0.196 0.186
GAL 120B 120 0.252 0.272 0.252

Table 18: Protein Function Prediction. Metric shown is ROUGE-L. Performance increases with scale.

As with the keyword prediction task, Galactica appears to be learning based on matching sequences with
similar ones it has seen in training, and using this to form a description. This suggests language models
for protein sequences could serve as useful alternatives to existing search methods such as BLAST and
MMseqs2 (Altschul et al., 1990; Steinegger and Söding, 2017).

6 Toxicity and Bias
In this section we study the toxicity and bias of the Galactica model. We evaluate on benchmarks related to
stereotypes, toxicity, and misinformation. We compare results to other language models. We find Galactica is
significantly less biased and toxic than existing language models.

27



Galactica: A Large Language Model for Science

This is the sequence:

[START_AMINO]MTNIRKNHPLLKTINDAFIDLPTPSNISTWWNFGSLLGACLIIQVLTGLFLAMHYTSDT...[END_AMINO]

Ground-Truth Description

Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is
part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to
cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then
used for ATP synthesis.

Galactica 120B Predicted Description

Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that
is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to
cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then
used for ATP synthesis.

Figure 21: Protein Description Prediction. Example shown is Q7Y8J5 from the PaenSeq holdout, a Cy-
tochrome b protein from a rock hyrax. The closest protein by sequence similarity in the training set is the
O03363 protein, a Cytochrome b protein from a pygmy hippopotamus, with 83% sequence similarity.

6.1 Bias and Stereotypes

For the following evaluations, we investigate Galactica’s ability to detect (and generate) harmful stereotypes
and hate speech, using four widely used benchmarks.

6.1.1 CrowS-Pairs

CrowS-Pairs
Bias type text-davinci-002 OPT 175B Galactica 120B
Race 64.7 68.6 59.9
Socioeconomic 73.8 76.2 65.7
Gender 62.6 65.7 51.9
Disability 76.7 76.7 66.7
Nationality 61.6 62.9 51.6
Sexual-orientation 76.2 78.6 77.4
Physical-appearance 74.6 76.2 58.7
Religion 73.3 68.6 67.6
Age 64.4 67.8 69.0
Overall 67.2 69.5 60.5

Table 19: CrowS-Pairs Results. Galactica demonstrates significantly lower stereotypical bias in all categories
with the exception of sexual orientation and age.

CrowS-Pairs is a collection of 1,508 crowd-sourced pairs of sentences, one which is "more" stereotyping and
one which is "less" stereotyping, and covers nine characteristics (Nangia et al., 2020). These characteristics are
race, religion, socioeconomic status, age, disability, nationality, sexual orientation, physical appearance, and
gender. A language model’s preference for stereotypical content is measured by computing the proportion of
examples in which the "more" stereotypical sentence is preferred (as determined by log likelihood). Higher
scores indicate a more harmfully biased model, whereas an ideal model with no bias would score 50%.
We report results for Galactica and other language models in Table 19. Galactica exhibits significantly lower
stereotypical biases in most categories, with the exception of sexual orientation and age, when compared
to the latest GPT-3 (text-davinci-002) and OPT 175B. Galactica attains a better overall score of 60.5%
compared to the other models. Language models such as OPT use the Pushshift.io Reddit corpus as a

28



Galactica: A Large Language Model for Science

primary data source, which likely leads the model to learn more discriminatory associations (Zhang et al.,
2022). Galactica is trained on a scientific corpus where the incidence rate for stereotypes and discriminatory
text is likely to be lower.

6.1.2 StereoSet

StereoSet
Category text-davinci-002 OPT 175B Galactica 120B

LMS (↑) 78.4 74.1 75.2
Prof. SS (↓) 63.4 62.6 57.2

ICAT (↑) 57.5 55.4 64.3
LMS (↑) 75.6 74.0 74.6

Gend. SS (↓) 66.5 63.6 59.1
ICAT (↑) 50.6 53.8 61.0
LMS (↑) 80.8 84.0 81.4

Reli. SS (↓) 59.0 59.0 55.1
ICAT (↑) 66.3 68.9 73.1
LMS (↑) 77.0 74.9 74.5

Race SS (↓) 57.4 56.8 54.8
ICAT (↑) 65.7 64.8 67.3
LMS (↑) 77.6 74.8 75.0

Overall SS (↓) 60.8 59.9 56.2
ICAT (↑) 60.8 60.0 65.6

Table 20: StereoSet Results. Galactica outperforms all models across all categories on the ICAT score.

StereoSet aims to measure stereotypical biases across profession, religion, gender, and race (Nadeem et al.,
2021). The benchmark contains two tasks: an intrasentence task and an intersentence task, with around 2,100
examples each in the development set.

• Intrasentence Task: the stereotype and associated context are in the same sentence.
• Intersentence Task: the context and stereotype are in different (consecutive) sentences.

Alongside stereo- and anti-stereotypical variants of sentences, each example in StereoSet contains an unrelated
sentence. This sentence is included for measuring a Language Modelling Score (LMS) and a Stereotype
Score (SS). These two metrics are combined to form the Idealized Context Association Test score (ICAT),
which is a balanced measure of bias detection and language modeling. An ideal, unbiased language model
would score an LMS of 100, an SS of 50, and an ICAT of 100.
We report results in Table 20. Galactica outperforms other models on all categories for the overall ICAT score.

6.1.3 Toxicity

To measure toxicity we use the RealToxicityPrompts (RTP) benchmark introduced in Gehman et al. (2020).
We follow the same setup of Zhang et al. (2022) and sample 25 generations of 20 tokens using nucleus
sampling (p=0.9) for each of 5000 randomly sampled prompts from RTP. We use the prompts to produce
sequences (i.e, continuations) which are then scored by a toxicity classifier provided by Perspective API5.
Figure 22 plots the results. The chart shows the mean toxicity probability of continuations (y-axis), stratified
across bucketed toxicities of the original prompts (x-axis). Galactica exhibits substantially lower toxicity
rates than the other models.

6.2 TruthfulQA

TruthfulQA is a benchmark that measures answer truthfulness of language model generations (Lin et al.,
2022a). It comprises 817 questions that span health, law, finance and other categories. We compare to other

5https://github.com/conversationai/perspectiveapi
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Figure 22: Toxicity rate on RealToxicityPrompts. Galactica exhibits much lower toxicity continuation rates,
even as we increase the original prompt toxicity.

published language models. We report results in Table 21. Galactica exceeds the performance of other
language models on this benchmark. However, absolute performance is still low. Given the curated nature of
our corpus, this suggests that data alone does not cause language models to struggle at this task.

TruthfulQA
Model MC1 (Acc) MC1 (Std)
OPT 175B 21% 0.13
BLOOM 176B 19% 0.07
GAL 125M 19% 0.11
GAL 1.3B 19% 0.15
GAL 6.7B 19% 0.03
GAL 30B 24% 0.05
GAL 120B 26% 0.02

Table 21: TruthfulQA Results. Galactica exhibits superior performance to other language models, and
performance increases with scale. but slowly and at low levels.

7 Limitations and Future Work
7.1 Limitations

We cover some of the limitations with work in this section.

Corpus Limitations Our corpus has several limitations, both external and internally imposed. The main
external constraint is our restriction to use open-access resources, and much of scientific knowledge like
papers and textbooks are not open access. With access to these closed sources of knowledge, performance is
likely to be considerably higher. We also use self-imposed constraints, like restricting the number of molecules
and proteins for this work; without these constraints, we are likely to see considerable performance gains
due to much larger corpuses for these modalities.
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Corpus Effects vs Prompt Effects In several benchmarks, we showperformance gains over existing language
models, but we do not specifically disentangle the effects of the prompts we included in pre-training versus
the core scientific corpus. In future work, we likely need to disentangle these effects in order to see whether
general language capabilities are possible with a scientific corpus alone without prompt boosting.

Citation Bias While we demonstrate that the model approaches the true citation distribution with scale,
some bias towards popular papers still remains with the 120B scale model, so the model likely requires
augmentation before being used in a production environment.

Prompt Pre-Training vs Instruction Tuning We opted for the former in this paper, but ideally we would
need to explore what the latter could achieve, along the lines of the recent work of Chung et al. (2022). A
limitation of this work is that we do not perform this direct comparison through ablations, making clear the
trade-offs between approaches.

General Knowledge While Galactica absorbs broad societal knowledge through sources such as Wikipedia
- e.g. 120B knows Kota Kinabalu is the capital of Malaysia’s Sabah state - we would not advise using it for
tasks that require this type of knowledge as this is not the intended use-case.

Text as a Modality While we have shown text-based Transformers are surprisingly powerful with text
representations of scientific phenomena, we caution against the interpretation that text is all you need. For
example, in chemistry, geometry is a fundamental language that determines meaning, yet Galactica has no
notion of geometry; e.g. 3D co-ordinates of atoms.

7.2 Future Work

For development of the base model, we highlight several directions that may be worth pursuing.

New Objective Function It is likely further gains can be obtained with mixture-of-denoising training as
U-PaLM has recently shown (Tay et al., 2022b; Chung et al., 2022). We suspect this might be beneficial for
the scientific modalities such as protein sequences, where the left-to-right LM objective is quite limiting.

Larger Context Window We use a maximum context window length of 2048 tokens in this work. Extending
this is likely to be beneficial for understanding in long-form scientific documents, such as textbooks and also
documents with longer modality sequences (e.g. long protein sequences).

Extending to Images We cannot capture scientific knowledge adequately without capturing images. This is
a natural follow-up project, although it likely requires some architectural modification to make it work well.
Existing work such as Alayrac et al. (2022) have way how to extend LLMs with this modality.

More <work> examples We feel <work> could be a general-purpose reasoning token and we would like
to invest more in this direction, including increasing prompt diversity and exploring performance on more
benchmarks.

Verification Even as language models become more accurate with scale, we need assurances that their
generations are correct and factual. Developing this layer is critical for production applications of language
models in general beyond scientific applications.

Continual Learning Should we re-train from scratch to incorporate new scientific knowledge or train from
older checkpoints? This is an open question, and further research is needed to find the best procedure for
incorporating new knowledge into the model.

Retrieval Augmentation While we have shown how large language models can absorb large bodies of
scientific knowledge, retrieval has a place for fine-grained types of knowledge, and we believe this is a strong
direction to pursue to complement the flexible weight memory of the Transformer.
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8 Discussion and Conclusion
For over half a century, the dominant way of accessing scientific knowledge has been through a store-
and-retrieve paradigm. The limitation of this approach is the reasoning, combining and organization of
information still relies on human effort. This has led to a significant knowledge throughput bottleneck. In
this work we explored how language models might disrupt this paradigm and bring about a new interface
for humanity to interface with knowledge.
We showed that language models are surprisingly strong absorbers of technical knowledge, such as LaTeX
equations and chemical reactions, and these capabilities tend to scale smoothly with model size. The context-
associative power of languagemodels likely confers significant advantages over search engines in the long-run.
We demonstrated this for citation prediction, where a language model outperforms tuned sparse and dense
retrieval pipelines for this task. Language models will likely provide a valuable new tool for exploring the
literature and the body of scientific knowledge in coming years.
We also demonstrated that language models can compose a curated knowledge base to perform well in
knowledge-intensive question answering tasks. This includes composing knowledge in a step-by-step reason-
ing manner. We showed that with a working memory token approach, we can achieve strong performance
over existing methods on mathematical MMLU and MATH benchmarks. We suspect tasks like MATH are in
principle solvable with language model approaches. The current bottleneck is the availability of high quality
step-by-step datasets. However, language models will not perform these tasks like humans until they have
an architectural change that supports adaptive computation.
We also performed initial investigations on the potential of LLMs to act as a bridge between scientific
modalities and natural language. We showed Galactica could learn tasks like IUPAC naming through
self-supervision. We also showed that it is possible to formulate drug discovery tasks like MoleculeNet in
a natural language prompt and achieve strong results without direct fine-tuning. Lastly, we showed the
potential for tasks such as automatic protein annotation. In all, increasing the number (and size) of datasets
that bridge between natural language and natural sequences is likely to boost performance further.
Taken together, we feel there is a strong potential for language models to take on knowledge tasks that are
currently human specialisms. We open source the models so others can build on our work, and we look
forward to seeing how the open machine learning community will extend it.
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A Appendix
A.1 Dataset Components

We cover the various components of the corpus in this section.

A.1.1 Papers

We source scientific papers from preprint servers such as arXiv, PMC and other sources; see Table 22.
We also use the Semantic Scholar full text dataset (S2) to capture the long tail of science (Lo et al., 2019a).
We apply several quality filters, including excluding papers from journals with certain keywords, and also
excluding papers with a low journal impact factor. Details of the filters we used are contained in the Appendix.
We source abstracts where full texts are not open access. In total the full dataset contains 48 million papers,
abstract and full-text, up to July 2022.

Data source Documents Tokens
arXiv 2 million 35 billion
PMC 3 million 23 billion
Semantic Scholar 3 million 18 billion
PubMed Abstracts 21 million 5 billion
Semantic Scholar Abstracts 19 million 4 billion
bioRxiv 128,059 1 billion
OSF 54,905 428 million
medRxiv 24,019 176 million
ACL 25,518 150 million
PubAg Abstracts 308,235 105 million
ChemRxiv 7,617 67 million
Total 48 million 88 billion

Table 22: Paper sources used in our corpus

We use a modified version of the GROBID library for converting PDFs to text, as well as obtaining titles,
authors and citations (GROBID, 2008–2022). Where mathematical LaTeX is available, for example in arXiv,
we make sure to combine the GROBID results with LaTeX source to recover mathematical content.
The final paper documents are stored in a markdown format, as opposed to full LaTeX. We use markdown as
the standard format for all documents in the corpus to support knowledge blending between sources. Papers
are citation processed, following the title-based approach of Section 2.2.

A.1.2 Reference Material

We source encyclopedias, textbooks and educational material to create a base of reference material that the
model can learn from. The details are covered in Table 23.
We apply source specific processing for several of the datasets, specifically:

• For StackExchange, we take questions from scientific sites; see the Appendix for the subset used.
• For Papers with Code and IUPAC Goldbook we apply data augmentation in the form of prompt ran-

domization. Sometimes we pose sections as questions/answers; for example a section explaining a
machine learning method is sometimes posed as "Question: What is [method]?".

• For KhanAcademy articles, we add <work> tokens for step-by-step reasoning examples, which we
explain shortly in Section 2.4.

We make an effort to preserve mathematical LaTeX and capture citations, including hyperlinks to papers.

A.1.3 Knowledge Bases

We source fine-grained knowledge from scientific knowledge bases. The details are covered in Table 24.
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Data source Documents Tokens
Wikipedia 6 million 5 billion
StackExchange 1.6 million 1 billion
LibreText 95,113 185 million
Wikibooks 74,705 110 million
Open Textbooks 647 94 million
MIT OCW 25,640 90 million
Wikiversity 38,138 52 million
ProofWiki 32,389 12 million
Khan Academy 3,075 7 million
Papers with Code 13,430 4 million
IUPAC Goldbook 6,788 1 million
Total 8 million 7 billion
Table 23: Reference material used in our corpus

Data source Documents Tokens
PubChem Compound 1.7 million 1 billion
UniProt 551,837 0.6 billion
RefSeq Genome 69 0.1 billion
OEIS 350,833 0.07 billion
Ribosome 9,950 0.05 billion
LIPID MAPS 45,273 0.03 billion
Reactome 156 0.01 billion
NASA Exoplanet 5,021 0.01 billion
Total 2 million 2 billion
Table 24: Knowledge bases used in our corpus

For the chemistry and biology datasets, we wrap modalities like SMILES and protein sequences with their
specialized tokens (see Section 2.1). For UniProt we apply data augmentation to the document format:

• Order Randomization - with probability 0.5 the protein sequence starts at beginning of the document,
else the end of document. This ensures we can learn from seq → property and property → seq.

• Format Randomization - with probability 1
3 we replace a description, e.g. "The function of protein

is...", with a Q&A, e.g. "Question: What is the function of the protein? Answer: The function is...".

For NASA Exoplanet we apply order randomization to the exoplanet characteristics.
For chemical and biological sequences, we take a small subset of available entities. This is to ensure the
model is not overly biased towards learning natural sequences over natural language. Specifically:

• For PubChem Compound, we take a small, random subset (2million) of total compounds (110million).
• For UniProt, we take reviewed Swiss-Prot proteins; a small subset (0.5 million) of total (227 million).
• For RefSeq Genome, we take reference sequences, which is a small subset of available nucleotide

sequences. For the human genome, we only include the protein-coding genes.

This is a constraint we can relax in future work, enabling for much larger corpus. In this work, we focus on
the first step of investigating whether a single model can learn effectively in this multi-modal setting.

A.1.4 Common Crawl

We source academic and scientific content via a highly-filtered subset of CommonCrawl. The details are
covered in Table 25.
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Data source Documents Tokens
ScientificCC 0.8 million 0.7 billion
AcademicCC 0.05 million 0.4 billion
Total 0.9 million 1.1 billion

Table 25: CommonCrawl material used in our corpus

For Scientific Common Crawl, we train a fasttext classifier to identify Common Crawl webpages with scientific
content (Joulin et al., 2016) using a noisy set of 600 domains. We then manually annotated the domains
predicted by fasttext as scientific to assemble a list of 200 high-quality scientific and reference domains.
For Academic Common Crawl, we assemble a list of academic domains, such as university websites. We take
PDFs from these domains, based on the Common Crawl index, and process these using GROBID.
We do not LaTeX-process pages from these sources.
We found the quality of extracted text in CommonCrawl generally quite poor, which is why we applied
stringent filters. We suspect this could be an important area for future work in order to capture more base
scientific knowledge.

A.1.5 Code

We source academic GitHub repositories from the Papers with Code index for machine learning, physics,
mathematics, statistics and astronomy. The index does not explicitly cover sciences such as biology and
chemistry, but many of these repositories are captured as part of the general machine learning index. We
exclude repositories that do not have a license or copyright file.

A.1.6 <work> Datasets

For KhanProblems, we used the problems from AMPS and converted to a <work> format (Hendrycks et al.,
2021). Where possible we tried to include more tedious steps to reduce errors from a single pass, but this
annotation was fairly incomplete and we suspect bigger gains are possible with more cleaning.
For GSM8k we use the provided training dataset and convert so the calculator steps are performed by writing
a Python program, following the <work> format (Cobbe et al., 2021). In general, we found when the model
went into this prompt style, it was more error-prone. We think this is because the prompt style made the
model write too many programs within <work>, rather than getting things ready to run in a single program.
In general we found longer <work> answers led to a higher chance of a mistake on the reasoning path.
For OneSmallStep, we made 50 problem set question templates, and randomized the variables in the problem
to get more prompt examples. We summarize the fields we made prompts below.

Field Templates
Astronomy 2
Chemistry 7
Electronics 10
Mathematics 15
Physics 14
Statistics 2
Total 50

As we can see the diversity was not very large, and so further gains are likely with more annotation.
Lastly we wrote 921 examples, based off internet examples, in a <work> format for Workout. This was
our highest quality dataset, and had reasonable diversity across fields: mathematics, chemistry, biology,
astronomy, physics, geology, history. This is the type of dataset we would look to scale in future work.
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A.2 Dataset Deduplication

We use the following procedure for deduplicating the corpus:

• We identify identical spans of 100 bytes or more (of utf-8 text) across the whole corpus, except for
some explicitly excluded data sources. We do this using the repository from Lee et al. (2022).

• We process corpus files in a predetermined order to prioritize some sources. From a set of spans
representing the exact same content across files, we remove the span in the first file. If the same
content repeats across a single file and it was not found in the files before, all its occurrences are kept.

• We merge duplicated spans separated by at most 4 bytes.
• We narrow down the resulting spans to paragraph boundaries (i.e. "\n\n").
• We remove the content from files corresponding to the spans.

A.3 Citation Identifier Ablations

We report ablations for the citation identifier ablations below, where we test title-based identifiers versus
alphanumeric identifiers.
Specifically, we set up an evaluation set of dataset and method names from Papers with Code. The task is
to predict the citation given the method or dataset name, e.g. ResNet [START_REF], where the target is
Deep Residual Learning for Image Recognition, He. We train a 6.7bn model on both types of process-
ing for the ablation. Method and dataset results are shown below.

Citation Processing
(a) Titles (b) IDs

Method citations Correct Hallucinated Incorrect Correct Hallucinated Incorrect
k = 1 13.8% 54.5% 31.7% 1.8% 3.5% 94.7%

2 ≤ k < 5 30.4% 38.6% 31.1% 9.3% 4.0% 86.7%
5 ≤ k < 10 36.3% 29.5% 34.2% 17.9% 0.0% 82.1%
10 ≤ k < 25 43.0% 15.8% 41.2% 38.8% 3.0% 58.2%
25 ≤ k < 50 53.4% 8.7% 37.9% 43.7% 0.0% 56.3%
50 ≤ k < 100 64.8% 9.9% 25.3% 60.6% 1.4% 38.0%
100 ≤ k < 500 64.6% 8.3% 27.1% 63.5% 1.0% 35.4%

≥ 500 78.6% 0.0% 21.4% 78.6% 0.0% 21.4%
Table 26: Citation Processing Ablation. We predict citations for the PWC Methods dataset using 6.7 billion
size models. Papers are bucketed according to the number of citations (mentions) in the dataset. The title
processing model has a higher accuracy, but greater risk of hallucination. There are 1,705 methods in this
evaluation dataset.

Citation Processing
(a) Titles (b) IDs

Dataset citations Correct Hallucinated Incorrect Correct Hallucinated Incorrect
k = 1 1.4% 62.5% 36.1% 0.5% 11.5% 88.1%

2 ≤ k < 5 5.0% 59.2% 35.8% 0.6% 10.2% 89.2%
5 ≤ k < 10 15.4% 49.7% 34.8% 2.6% 6.2% 91.1%
10 ≤ k < 25 25.7% 36.8% 37.5% 8.3% 4.8% 86.9%
25 ≤ k < 50 44.6% 27.4% 28.0% 22.9% 7.0% 70.0%
50 ≤ k < 100 58.6% 17.7% 23.6% 41.4% 7.7% 50.9%
100 ≤ k < 500 65.5% 6.7% 27.8% 62.4% 3.1% 34.5%

≥ 500 81.8% 6.1% 12.1% 81.8% 3.0% 15.2%
Table 27: Citation Processing Ablation. We predict citations for the PWC Datasets dataset using 6.7 billion
capacity models. There are 4,735 datasets in this evaluation dataset.
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A.4 120B Validation Loss Per Source

Figure 23: Validation Loss Per Source. Validation loss falls through training for all dataset categories. Results
are shown for the 120B model above.

A.5 Chain-of-Thought vs <work>

We used the recent results by Chung et al. (2022) of PaLM 540B on the MMLU validation set (Hendrycks
et al., 2020) for comparison. While use of reasoning degrades performance versus direct prompting for both
approaches, the <work> token appears more robust.

Chain-of-Thought versus <work>
Subject Examples PaLM 540B CoT GAL 30B <work> GAL 120B <work>

Abstract Algebra 11 9.1% 27.3% 27.3%
Astronomy 16 7.1% 43.8% 25.0%
College Chemistry 8 12.5% 37.5% 37.5%
College Computer Science 11 9.1% 45.5% 54.6%
College Mathematics 11 0.0% 36.4% 18.2%
College Physics 11 36.4% 36.4% 45.5%
Econometrics 11 33.3% 33.3% 33.3%
Electrical Engineering 16 18.8% 37.5% 56.3%
Elementary Mathematics 41 24.4% 53.7% 58.5%
Formal Logic 9 0.0% 21.4% 21.4%
High School Chemistry 22 22.7% 27.3% 36.4%
High School Computer Science 9 33.3% 44.4% 44.4%
High School Mathematics 29 24.1% 31.0% 51.7%
High School Physics 17 11.8% 23.5% 29.4%
High School Statistics 23 26.1% 39.1% 56.5%
Machine Learning 11 18.2% 9.1% 27.3%
Overall 261 19.1% 35.9% 42.4%

Table 28: <work> vs Chain-of-Thought. PaLM is evaluated with CoT 5-shot. Galactica with the <work>
token included in pre-training. Results here are on MMLU dev for comparability with PaLM.
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BIG-bench
Benchmark OPT 30B OPT 175B BLOOM 176B GAL 30B GAL 120B
Anachronisms 47.4% 49.1% 1.3% 47.0% 48.7%
Analogical Similarity 12.7% 19.8% 19.2% 17.0% 23.5%
Analytic Entailment 40.0% 52.9% 48.6% 47.1% 51.3%
Causal Judgment 53.7% 55.3% 54.7% 49.5% 51.1%
Crash Blossom 42.1% 36.8% 47.4% 42.1% 42.1%
Crass AI 20.5% 34.1% 31.8% 40.9% 52.3%
Dark Humor Detection 46.3% 48.8% 51.3% 48.8% 46.3%
Date Understanding 15.5% 21.1% 12.2% 11.4% 16.8%
Disambiguation QA 39.5% 44.6% 44.2% 46.9% 43.0%
Empirical Judgments 38.4% 52.5% 56.6% 50.5% 54.6%
English Proverbs 26.5% 20.6% 26.5% 26.5% 17.7%
Entailed Polarity 87.8% 88.5% 89.2% 89.2% 85.8%
Epistemic Reasoning 43.4% 43.5% 61.2% 40.1% 53.0%
Evaluating Information Essentiality 32.4% 19.1% 29.4% 25.0% 22.1%
Fantasy Reasoning 67.7% 69.2% 65.2% 66.7% 52.7%
Figure of Speech Detection 10.2% 13.6% 22.0% 13.6% 15.3%
General Knowledge 51.4% 78.6% 80.0% 68.6% 74.3%
GRE Reading Comprehension 6.5% 12.9% 22.6% 16.1% 35.5%
Hindu Knowledge 32.6% 42.3% 48.6% 36.6% 49.7%
Human Organs Senses 45.2% 57.1% 59.5% 71.4% 73.8%
Identify Odd Metaphor 27.7% 21.3% 19.2% 19.2% 27.7%
Implicatures 44.3% 49.6% 53.7% 59.4% 69.9%
Implicit Relations 22.4% 35.3% 28.2% 16.5% 25.9%
Intent Recognition 66.2% 79.2% 89.5% 87.8% 89.5%
Irony Identification 50.5% 49.5% 63.6% 60.6% 59.6%
Known Unknowns 50.0% 52.2% 50.0% 50.0% 41.3%
Logic Grid Puzzle 32.7% 31.6% 31.1% 35.8% 39.4%
Logical Args 18.8% 34.4% 25.0% 34.4% 43.8%
Logical Fallacy Detection 50.9% 54.9% 54.5% 54.1% 55.1%
Logical Sequence 38.5% 46.2% 30.8% 25.6% 43.6%
Mathematical Induction 60.9% 55.1% 52.2% 44.9% 58.0%
Metaphor Boolean 51.1% 57.5% 61.5% 63.4% 49.1%
Misconceptions 56.1% 57.5% 54.8% 51.6% 58.0%
Moral Permissibility 50.6% 54.4% 57.0% 52.3% 49.7%
Movie Recommendation 6.4% 52.6% 49.4% 31.6% 36.8%
Navigate 49.3% 49.8% 51.1% 50.9% 51.8%
Nonsense Words Grammar 28.0% 46.0% 48.0% 38.0% 48.0%
Novel Concepts 9.4% 12.5% 15.6% 6.3% 9.4%
Odd One Out 30.2% 26.7% 22.1% 12.8% 19.8%
Penguins in a Table 29.5% 32.9% 28.2% 40.9% 36.9%
Phrase Relatedness 45.0% 51.0% 55.0% 53.0% 64.0%
Physical Intuition 39.5% 42.0% 37.0% 55.6% 58.0%
Physics 39.3% 42.8% 54.2% 55.9% 65.5%
Presuppositions as NLI 36.6% 36.2% 39.6% 34.0% 28.0%
Question Selection 39.8% 42.1% 5.2% 41.1% 42.7%
Reasoning about Colored Objects 33.9% 38.7% 40.5% 45.8% 55.0%
Riddle Sense 40.8% 57.1% 44.9% 46.9% 42.9%
Ruin Names 19.4% 20.8% 12.5% 24.1% 33.0%
Sentence Ambiguity 63.3% 60.0% 65.0% 60.0% 66.7%
Similarities Abstraction 21.1% 22.4% 27.6% 21.1% 13.2%
Snarks 42.0% 41.4% 47.0% 48.1% 48.6%
Sports Understanding 50.0% 48.8% 54.5% 52.0% 51.8%
StrategyQA 56.1% 58.5% 57.1% 53.9% 53.7%
Temporal Sequences 31.4% 28.4% 20.5% 26.4% 21.2%
Timedial 15.3% 22.2% 24.4% 39.9% 40.8%
Understanding Fables 20.1% 19.6% 24.9% 28.0% 20.1%
Winowhy 37.2% 39.7% 38.0% 56.5% 56.4%
Average (weighted) 39.6% 43.4% 42.6% 46.6% 48.7%
Average (unweighted) 32.8% 42.7% 42.2% 42.7% 45.3%

Table 29: BIG-bench Results. Galactica exceeds the performance of general models, even at lower scales.
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A.6 Prompt Pre-training Datasets

We report the prompt datasets we included in pre-training below.

Data source Split Prompts Tokens
MedMCQA (Pal et al., 2022) train 180,894 13,311,290
RACE (Xu et al., 2017) train 29,502 12,160,390
Quoref (Dasigi et al., 2019) train 19,206 10,361,335
ROPES (Lin et al., 2019) train 10,815 2,672,195
BioASQ7 task b (Nentidis et al., 2021) train 2,676 1,288,462
TQA (Kembhavi et al., 2017) train 8,566 1,856,473
BoolQ (Clark et al., 2019) train 9,333 1,224,335
SciQ (Welbl et al., 2017) train 10,346 1,397,668
QASC (Khot et al., 2020) train 8,053 930,414
CommonSenseQA (Talmor et al., 2018) train 9,644 660,750
OpenBookQA (Mihaylov et al., 2018) train 4,908 324,995
QCScience (V et al., 2021) train 2,417 209,803
PubMedQA (Jin et al., 2019) train 495 186,304
QASPER (Dasigi et al., 2021) train 606 105,985
UChallenge (new) train 346 29,308
TrueOrFalse (new) train 107 2,854

Table 30: Question answering prompts used in Naturebook

Data source Split Prompts Tokens
JNLPBA (Kim et al., 2004) train 91,213 5,262,723
BC4CHEMD (Krallinger et al., 2004) train 30,234 1,756,929
ChemProt (Taboureau et al., 2011) train 3,030 1,286,816
BC2GM (Smith et al., 2008) train 12,375 704,357
S800 (Pafilis et al.) train 5,318 281,448
BC5CDR Chem (Li et al., 2016) train 4,503 241,729
BC5CDR Disease (Li et al., 2016) train 4,498 231,322
MethodNet (new) train 659 167,904
Scientific Entities (new) train 305 97,935

Table 31: Entity extraction prompts used in Naturebook

Data source Split Prompts Tokens
PWC Desc (new) train 3,586 9,663,419
SciTail (Khot et al., 2018) train 23,361 1,383,614
Fragmented Glass (new) train 718 867,985
SciTLDR (Cachola et al., 2020) train 1,973 472,169

Table 32: Summarization prompts used in Naturebook

Data source Split Prompts Tokens
Wizard of Wikipedia (Dinan et al., 2018) train 18,246 4,466,113
Advising (Gunasekara et al., 2019) train 495 147,793

Table 33: Dialog prompts used in Naturebook
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Data source Split Prompts Tokens
BACE Classification train 1,198 122,699
BACE Regression train 1,198 154,656
BBBP train 1,613 115,916
ClinTox train 1,171 100,955
Delaney train 893 62,083
FreeSolv train 508 29,542
HIV train 32,572 2,308,966
HOPV train 2,217 333,620
Lipo train 3,327 362,342
PCBA train 714,277 553,645,656
QM7 train 5,416 320,199
QM8 train 275,569 27,163,516
QM9 train 1,259,090 128,427,073
SAMPL train 508 1,259,090
SIDER train 30,499 2,741,904
Thermosol train 1,396 139,481
Tox21 train 73,883 54,224,093

Table 34: Chemical property prediction prompts used in Naturebook
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A.6.1 Chemical Property Prediction

We set up a prediction task for chemical and physical properties with our validation set of 17,052 compounds.
We use the PubChem document structure to design a prompt. We show an example for XLogP in Figure 24.

Canonical SMILES

[START_SMILES]CC(=O)OC1=CC=CC=C1C(=O)O[END_SMILES]

Computed Properties

| Property Name | Property Value
| XLogP3-AA Log P |

Figure 24: Chemical Property Prompt. We design a prompt based on the PubChem document format. Using
this prompt style, we test the model’s ability to learn chemical and physical properties from the SMILES
sequence.

We report results in Table 35. The error decreases fairly smoothly with scale, suggesting self-supervised
learning is occurring within-document from SMILES towards the chemical and physical properties. But it
tails off for 120B which suggests more molecule data might be needed.

Chemical and Physical Property Prediction
Model Param (bn) Mol. Weight XLogP Rotatable Bond # Topological PSA
GAL 125M 0.1 101.43 1.638 4.389 36.63
GAL 1.3B 1.3 101.05 1.413 3.930 41.11
GAL 6.7B 6.7 81.76 1.197 2.932 30.01
GAL 30B 30 77.46 1.101 3.534 29.54
GAL 120B 120 86.57 1.131 3.474 28.84

Table 35: Chemical and physical property prediction. All results reported as RMSE. Prediction error
generally decreases with scale, indicating Galactica can infer properties from SMILES.

A.6.2 Docking Regression

We looked briefly at the docking score regression task (García-Ortegón et al., 2022). Here the task is to
predict a docking score based on an target and a ligand. In the case of Galactica, we use a text format to
represent this information. An example is shown in Figure 25. We report results in Table 36.

[START_AMINO]MLEICLKLVGCKSKKGLSSSSSCYLEEALQRPVASDFEPQGLSEAARWNSKE...[END_AMINO]

[START_I_SMILES]O1[C@@H]([C@@H](O)[C@@H](O)[C@@H]1N2C(=O)NC(=O)C=C2)...[END_I_SMILES]

Question: What will be the docking score of this compound against the protein?

Answer: -8.8

Figure 25: DockSTRING Format. To construct the training set, we take the protein target and ligand
sequences, pose a natural language question, and have the docking score as the answer.

For three of the targets, Galactica is able to infer from looking at the sequences alone, and performance scales
from 1.3B parameters onwards. However, Galactica does not solve the two harder targets ESR2 and PGR.
This hints at a limitation with the text representation, and may point to more geometrical information being
needed to solve the task with reasonable data-efficiency.
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Docking Regression
Model Param (bn) ESR2 F2 KIT PARP1 PGR
GAL 125M 0.1 -12.4 -6.09 -6.73 -1.69 -12.4
GAL 1.3B 1.3 -0.293 0.591 0.063 0.728 -1.72
GAL 6.7B 6.7 -0.216 0.694 0.290 0.681 -0.894
GAL 30B 30 -0.186 0.679 0.313 0.732 -0.468
GAL 120B 120 -0.564 0.626 0.249 0.732 -0.960

Table 36: DockSTRING Results. Metric shown is R2.

A.6.3 Rest of MMLU

We report social sciences and results for other fields below:

Subject OPT BLOOM Gopher Chinchilla GAL 30B GAL 120B
Anatomy 28.9% 37.0% 56.3% 70.4% 54.1% 58.5%
Business Ethics 31.0% 36.0% 70.0% 72.0% 42.0% 48.0%
Clinical Knowledge 21.9% 29.8% 67.2% 75.1% 57.7% 59.2%
Computer Security 32.0% 34.0% 65.0% 76.0% 65.0% 67.0%
Conceptual Physics 34.9% 36.6% 49.4% 67.2% 43.4% 50.6%
Global Facts 23.0% 32.0% 38.0% 39.0% 32.0% 35.0%
High School European History 6.7% 4.8% 72.1% 78.8% 60.6% 67.3%
High School Geography 26.3% 38.9% 76.8% 86.4% 58.1% 63.6%
High School Gov. & Politics 32.6% 30.6% 83.9% 91.2% 58.5% 61.7%
High School Macroeconomics 36.2% 23.1% 65.1% 70.5% 40.5% 46.4%
High School Microeconomics 32.8% 27.3% 66.4% 77.7% 49.2% 55.9%
High School Psychology 25.5% 36.9% 81.8% 86.6% 68.8% 74.3%
High School US History 9.3% 11.8% 78.9% 83.3% 51.5% 58.3%
High School World History 30.0% 29.1% 75.1% 85.2% 63.7% 71.7%
Human Aging 35.0% 34.5% 66.4% 77.6% 55.2% 59.2%
Human Sexuality 26.0% 33.6% 67.2% 86.3% 56.5% 58.8%
International Law 33.1% 41.3% 77.7% 90.9% 64.4% 71.1%
Jurisprudence 0.0% 0.0% 71.3% 79.6% 47.2% 53.7%
Logical Fallacies 28.2% 28.2% 72.4% 80.4% 47.2% 59.5%
Management 25.2% 27.2% 77.7% 82.5% 60.2% 63.1%
Marketing 32.5% 41.0% 83.3% 89.7% 70.5% 76.5%
Miscellaneous 31.5% 37.7% 75.7% 84.5% 54.0% 63.9%
Moral Disputes 28.2% 32.7% 66.8% 77.5% 50.3% 56.6%
Moral Scenarios 25.4% 24.4% 40.2% 36.5% 24.1% 24.2%
Nutrition 30.4% 32.4% 69.9% 77.1% 63.1% 67.3%
Philosophy 29.9% 31.5% 68.8% 79.4% 52.4% 54.7%
Prehistory 36.7% 36.1% 67.6% 81.2% 52.2% 59.6%
Professional Accounting 29.8% 28.7% 44.3% 52.1% 31.2% 40.0%
Professional Law 30.3% 25.5% 44.5% 56.5% 34.6% 36.0%
Professional Medicine 27.9% 25.4% 64.0% 75.4% 52.2% 59.6%
Professional Psychology 32.7% 33.3% 68.1% 75.7% 50.5% 56.5%
Public Relations 34.5% 30.0% 71.8% 73.6% 44.5% 53.6%
Security Studies 35.1% 29.8% 64.9% 75.9% 46.5% 57.1%
Sociology 26.4% 29.9% 84.1% 91.0% 65.7% 72.6%
US Foreign Policy 44.0% 37.0% 81.0% 92.0% 64.0% 75.0%
Virology 30.7% 28.3% 47.0% 53.6% 44.6% 48.2%
World Religion 43.9% 41.5% 84.2% 87.7% 44.4% 64.9%

Table 37: Rest of MMLU. The corpus delta effects are more evidence with non-STEM subjects in particular,
where Galactica lags the performance of Chinchilla and Gopher.
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A.7 Further Training Dataset Details

A.7.1 FragmentedGlass

We compile a list of scientific entities, retrieve fragments for each one, and write a description of the entity
based on the retrieved fragments. This can be considered a summarization task. We also write ground-truth
descriptions without any retrieved fragments.

A.7.2 MethodNet

We compile machine learning abstracts and predict the new method that was introduced in the paper.

A.7.3 PWC Desc

For a list of dataset andmethods in machine learning, we retrieve fragments for each one from the introducing
paper, and write a summary description based on the retrieved fragments.

A.7.4 Ribosome

We use Expasy6 to create a paired translation set between nucleotide sequences from the protein coding part
of the human genome and protein sequences.

A.7.5 S2

Papers from certain fields are ignored due to quality concerns: psychology, business, art, economics, ge-
ography, history, political science, philosophy and sociology. Papers from journals with words like "law",
"history", "politics", "business", "religion" were also ignored. For S2, we also exclude papers from low impact
journals. The approximate impact factor of each journal in the S2 dataset was computed, by counting the
number of papers in that journal and the number of citations that these papers received. If the approximate
impact factor < 1, the papers from that journal are ignored. Non-English papers are ignored. Some of these
constraints can likely be relaxed in future work.

A.7.6 ScientificEntities

For a random sample of academic paper abstracts, we predict the scientific entities that were mentioned in
the abstract.

A.7.7 StackExchange

We include question and answers from the following sources: academic, ai, arduino, astronomy, aviation,
bioinformatics, biology, chemistry, chess, cogsci, computergraphics, cs, cseducators, cstheory, datascience,
dsp, earthscience, economics, electronics, engineering, hardwarerecs, health, hsm, math, matheducators,
mathematica, mathoverflow, /mechanics, networkengineering, or, physics, puzzling, quant, quantumcom-
puting, retrocomputing, reverseengineering, robotics, scicomp, softwareengineering, softwarerecs, sound,
space, stats.

A.7.8 TrueOrFalse

We include 107 True or False questions to improve zero-shot performance for this type of question.

A.7.9 UChallenge

We include 346 free-form question and answers of university-level questions about science; this is a form of
closed-book QA (and not multiple-choice).

6https://web.expasy.org/translate/
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A.8 Evaluation Dataset Examples

A.8.1 AminoProbe

Prompt

Question: Does peptide bond cleavage occur on the carbonyl side or the amino side for trypsin?

Answer: carbonyl

A.8.2 Galaxy Clusters

Prompt

Abell 370 is a galaxy cluster located in the constellation of

Correct Completion: Cetus

A.8.3 Mineral Groups

Prompt

Fayalite is a silicate mineral from the major group

Correct Completion: Nesosilicates

A.8.4 Deduplication Results

One of our concerns from reading the literature was the lack of data leakage analysis for results on MMLU,
given the massive corpuses being used. Following from previous work of Brown et al. (2020), we search for
n-gram matches between the training and test set. We chose to remove any 13-gram matches from the test set
that appear in the training set and we report the scores before and after removal of these clashing examples.
Results are shown overleaf.
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score_before score_after count_before count_after
abstract_algebra 33.0% 32.32% 100 99
anatomy 58.52% 58.95% 135 134
astronomy 65.13% 64.67% 152 150
business_ethics 48.0% 48.0% 100 100
clinical_knowledge 59.24% 59.24% 265 265
college_biology 68.75% 69.23% 144 143
college_chemistry 46.0% 46.46% 100 99
college_computer_science 49.0% 48.98% 100 98
college_mathematics 43.0% 45.26% 100 95
college_medicine 57.23% 57.74% 173 168
college_physics 42.16% 42.27% 102 97
computer_security 67.0% 67.35% 100 98
conceptual_physics 50.64% 50.85% 235 234
econometrics 42.11% 42.11% 114 114
electrical_engineering 62.76% 62.76% 145 145
elementary_mathematics 38.10% 38.10% 378 378
formal_logic 32.54% 32.54% 126 126
global_facts 35.0% 35.05% 100 97
high_school_biology 69.35% 69.61% 310 306
high_school_chemistry 47.78% 47.78% 203 203
high_school_computer_science 70.0% 70.0% 100 100
high_school_european_history 67.27% 66.17% 165 133
high_school_geography 63.63% 63.63% 198 198
high_school_government_and_politics 61.66% 61.46% 193 192
high_school_macroeconomics 46.41% 46.53% 390 389
high_school_mathematics 32.59% 32.58% 270 267
high_school_microeconomics 55.88% 55.88% 238 238
high_school_physics 33.77% 33.77% 151 151
high_school_psychology 74.31% 74.26% 545 544
high_school_statistics 41.20% 41.20% 216 216
high_school_us_history 58.33% 58.59% 204 99
high_school_world_history 71.73% 72.04% 237 186
human_aging 59.19% 59.19% 223 223
human_sexuality 58.78% 58.78% 131 131
international_law 71.07% 71.07% 121 121
jurisprudence 53.70% 53.70% 108 108
logical_fallacies 59.51% 59.26% 163 162
machine_learning 38.39% 36.54% 112 104
management 63.11% 63.11% 103 103
marketing 76.50% 76.50% 234 234
medical_genetics 68.0% 67.68% 100 99
miscellaneous 63.86% 63.81% 783 782
moral_disputes 56.65% 56.52% 346 345
moral_scenarios 24.24% 24.24% 895 895
nutrition 67.32% 67.32% 306 306
philosophy 54.66% 54.52% 311 310
prehistory 59.57% 59.57% 324 324
professional_accounting 40.07% 39.86% 282 281
professional_law 36.05% 36.05% 1534 1534
professional_medicine 59.56% 59.63% 272 270
professional_psychology 56.54% 56.54% 612 612
public_relations 53.63% 53.63% 110 110
security_studies 57.14% 57.14% 245 245
sociology 72.64% 73.0% 201 200
us_foreign_policy 75.0% 75.76% 100 99
virology 48.19% 48.48% 166 165
world_religions 64.91% 64.91% 171 171
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A.8.5 Example Wikipedia Article Written by Galactica

Multi-Head Attention

Multi-Head Attention is an attention mechanism used in the Transformer architecture for neural networks
(Vaswani et al., 2017).

Background

In natural language processing, an attention mechanism is a model that maps a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted
sum of the values, where the weight assigned to each value is computed by a compatibility function of the query
with the corresponding key (Vaswani et al., 2017).

The scaled dot-product attention is an attention mechanism used in the Transformer architecture. It is defined
as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output
are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with the corresponding key (Vaswani et al., 2017).

The multi-head attention is an extension of the scaled dot-product attention. The multi-head attention mechanism
is defined as several scaled dot-product attention stacked together, where the input is linearly projected h times
with different, learned linear projections to dk, dk, and dv dimensions, respectively (Vaswani et al., 2017).

Formal definition

Let the query matrix be Q, the key matrix beK, and the value matrix be V . The matrices are of shape dk × dq ,
dk × dk, and dv × dk respectively. The multi-head attention mechanism is defined as:

MultiHead (Q,K, V ) = Concat (head1, . . . ,headh)W
O

where:

headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
whereWQ

i ,WK
i , andWV

i are the learned linear projections to the dk, dk, and dv dimensions, respectively. WO

is the linear projection from dvh to dv dimensions (Vaswani et al., 2017).

Applications

Multi-head attention is widely used in natural language processing and other domains. For example, in the BERT
model, multi-head attention is used to learn the context-aware representation of the input sequence (Devlin et
al., 2019).

References

1. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. “Attention Is All You Need.” ArXiv abs/1706.03762 (2017).
2. Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.” ArXiv abs/1810.04805 (2019).
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A.8.6 Example Literature Survey Written by Galactica

Self-Supervised Learning, A Survey

Abstract: In this paper we review self-supervised learning, a method of learning features from unlabelled data.
We discuss the historical motivation behind self-supervised learning and review some of the current state of the
art methods. We also look at how self-supervised learning has been used to solve a wide range of problems,
including image classification, object detection, video analysis and robotics. Finally we discuss some of the
challenges and future research directions for self-supervised learning.

1 Introduction

Deep learning has been very successful at solving many problems in machine learning, however these methods
are reliant on large amounts of labelled data. In many real world applications, it is very expensive or impossible
to obtain large amounts of labelled data. Self-supervised learning has emerged as a way of overcoming this issue.

Self-supervised learning is the process of learning a task that can be automatically generated from unlabelled
data. In this way, the data is automatically labelled by exploiting some form of structure in the data. Once the
self-supervised task has been solved, the features learned by the network are used to solve the original task.

In this paper we will discuss the historical motivation behind self-supervised learning and review some of the
current state of the art methods. We will look at how self-supervised learning has been used to solve a wide
range of problems, including image classification, object detection, video analysis and robotics. Finally we will
discuss some of the challenges and future research directions for self-supervised learning.

2 Historical Motivation

The first wave of deep learning was dominated by supervised learning methods. These methods require
large amounts of labelled data, which is very expensive to obtain in many domains. To overcome this issue,
unsupervised learning methods were introduced. These methods don’t require labelled data, and so can be
applied to a wide range of domains. The downside of these methods is that the learned features are not as good
as those learned by supervised learning methods.

To bridge the gap between supervised and unsupervised learning, self-supervised learning was introduced. The
idea is to learn a supervised task from unlabelled data. Once this task has been learned, the features learned can
be transferred to other tasks. The hope is features learned by self-supervised learning will be better than those
learned by unsupervised learning, and that self-supervised learning can be applied to a wide range of domains.

The first method of self-supervised learning was autoencoders (Hinton et al., 1993). Autoencoders are a type of
neural network that learn to reconstruct the input. This can be thought of as learning a self-supervised task of
predicting the input from the input. The features learned by autoencoders have been shown to be useful for
solving other tasks (Hinton et al., 2006).

Another method of self-supervised learning is multi-task learning (Caruana, 2017). In multi-task learning,
multiple tasks are learned simultaneously. The idea is that by learning multiple tasks, the network will learn
better features. In this way, multi-task learning can be thought of as a form of self-supervised learning.

3 Learning Methods
(cont)

3.1 Pretext Tasks

The first method of self-supervised learning that we will discuss is the use of pretext tasks. In this method, a
supervised task is learned from unlabelled data. This task is called a pretext task, and the labels for this task
are automatically generated from the data. Once the pretext task has been learned, the features learned by the
network are used to solve the original task. (cont)
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A.8.7 Example Lecture Notes Written by Galactica

Lecture 1: Hartree-Fock Theory

Introduction

In this lecture, we will consider the simplest quantum mechanical method for approximating the ground
state energy of a many-electron system. The Hartree-Fock method is also known as the self-consistent
field method, and is an approximation to the exact many-electron wavefunction known as the Slater
determinant. The Slater determinant is an anti-symmetric product of one-electron functions (orbitals),
and is the simplest wavefunction that satisfies the Pauli exclusion principle. The Hartree-Fock method is
an iterativemethod for finding the best possible set of orbitals that minimizes the energy of the Slater determinant.

In the Hartree-Fock method, the electron-electron repulsion energy is approximated as a classical Coulomb
interaction between two charge distributions, one for each electron. This approximation neglects the correlation
between the electrons, which is an important part of the total electron-electron repulsion energy. The resulting
method is a mean-field theory in which each electron moves in an average field due to the other electrons. The
resulting equations are known as the Hartree-Fock equations, and can be solved self-consistently to obtain
the best possible orbitals. The resulting ground state energy is known as the Hartree-Fock energy, and the
Hartree-Fock wavefunction is a single Slater determinant built from these orbitals.

The Hartree-Fock method is also known as the Self-Consistent Field (SCF) method, because the equations for the
orbitals are solved self-consistently. The Hartree-Fock equations can be derived variationally by minimizing the
energy of the Slater determinant with respect to the orbitals. The resulting orbitals are known as the canonical
Hartree-Fock orbitals, and are not necessarily localized in space. The Hartree-Fock energy is invariant to unitary
transformations of the canonical orbitals, and therefore there are an infinite number of orbitals that yield the
same Hartree-Fock energy. These orbitals are known as non-canonical orbitals, and can be localized in space by
appropriate unitary transformations.

Single-Electron Approximation

In this section, we will review the basics of quantum mechanics for a single particle. This is useful for
understanding the single-electron approximation used in Hartree-Fock theory.

The time-independent Schrödinger equation for a particle in a potential V (r) is given by:

H̄ψ(r) = Eψ(r)

where the Hamiltonian is

H̄ = − ℏ
2m

∇2 + V (r)

The time-independent Schrödinger equation is an eigenvalue equation for the Hamiltonian operator, where
the eigenvalues are the allowed energies of the system. The Hamiltonian is a sum of two operators, one
corresponding to the kinetic energy of the particle, and the other corresponding to the potential energy. The
potential energy operator acts on the wavefunction by multiplying by the potential V (r). The kinetic energy
operator is the Laplacian operator∇2, which is the divergence of the gradient of the wavefunction. The Laplacian
operator is a second derivative with respect to the position of the particle.

(cont)
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A.8.8 I’m sorry Frank, I think you missed it

If AI is going to help us explore the universe, we need it to have basic chess abilities to alleviate boredom -
given the impossibility of faster-than-light travel.
The BIG-bench task suite of Srivastava et al. (2022) has a benchmark for checkmate-in-one detection. For fun,
we made a dataset of 20,000 public chess games and converted them to ASCII chess using the python-chess
library7. We included 19,426 games in our pre-training corpus (rest for validation). We also recorded the
ELO ratings of players. An example document looks like below:

A Chess Game

Player Information

White ELO: 2286
Black ELO: 2586

The Game Begins

r n b q k b n r
p p p p p p p p
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
P P P P P P P P
R N B Q K B N R

White (ELO: 2286) plays e4

r n b q k b n r
p p p p p p p p
. . . . . . . .
. . . . . . . .
. . . . P . . .
. . . . . . . .
P P P P . P P P
R N B Q K B N R

(cont)

For evaluation, we converted the checkmate-in-one boards to ASCII and prompted for a move. Results are
shown below.

Model Accuracy
GAL 125M 0.54%
GAL 1.3B 0.43%
GAL 6.7B 1.77%
GAL 30B 1.29%
GAL 120B 3.03%

Table 38: Checkmate-in-one Results. Metric shown is Accuracy.

While this represents the state-of-the-art over other large language models8, it is clear that more work is
needed on this problem.

7https://python-chess.readthedocs.io/en/latest/
8https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/checkmate_in_one
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